Article

Enrichment of cis-regulatory gene expression SNPs and methylation quantitative trait loci among bipolar disorder susceptibility variants.

Department of Medicine, University of Chicago, Chicago, IL, USA.
Molecular Psychiatry (Impact Factor: 15.15). 01/2012; DOI: 10.1038/mp.2011.174
Source: PubMed

ABSTRACT We conducted a systematic study of top susceptibility variants from a genome-wide association (GWA) study of bipolar disorder to gain insight into the functional consequences of genetic variation influencing disease risk. We report here the results of experiments to explore the effects of these susceptibility variants on DNA methylation and mRNA expression in human cerebellum samples. Among the top susceptibility variants, we identified an enrichment of cis regulatory loci on mRNA expression (eQTLs), and a significant excess of quantitative trait loci for DNA CpG methylation, hereafter referred to as methylation quantitative trait loci (mQTLs). Bipolar disorder susceptibility variants that cis regulate both cerebellar expression and methylation of the same gene are a very small proportion of bipolar disorder susceptibility variants. This finding suggests that mQTLs and eQTLs provide orthogonal ways of functionally annotating genetic variation within the context of studies of pathophysiology in brain. No lymphocyte mQTL enrichment was found, suggesting that mQTL enrichment was specific to the cerebellum, in contrast to eQTLs. Separately, we found that using mQTL information to restrict the number of single-nucleotide polymorphisms studied enhances our ability to detect a significant association. With this restriction a priori informed by the observed functional enrichment, we identified a significant association (rs12618769, P(bonferroni)<0.05) from two other GWA studies (TGen+GAIN; 2191 cases and 1434 controls) of bipolar disorder, which we replicated in an independent GWA study (WTCCC). Collectively, our findings highlight the importance of integrating functional annotation of genetic variants for gene expression and DNA methylation to advance the biological understanding of bipolar disorder.Molecular Psychiatry advance online publication, 3 January 2012; doi:10.1038/mp.2011.174.

1 Bookmark
 · 
272 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: DNA methylation is an important epigenetic regulator of gene expression. Recent studies have revealed widespread associations between genetic variation and methylation levels. However, the mechanistic links between genetic variation and methylation remain unclear. To begin addressing this gap, we collected methylation data at ∼300,000 loci in lymphoblastoid cell lines (LCLs) from 64 HapMap Yoruba individuals, and genome-wide bisulfite sequence data in ten of these individuals. We identified (at an FDR of 10%) 13,915 cis methylation QTLs (meQTLs)-i.e., CpG sites in which changes in DNA methylation are associated with genetic variation at proximal loci. We found that meQTLs are frequently associated with changes in methylation at multiple CpGs across regions of up to 3 kb. Interestingly, meQTLs are also frequently associated with variation in other properties of gene regulation, including histone modifications, DNase I accessibility, chromatin accessibility, and expression levels of nearby genes. These observations suggest that genetic variants may lead to coordinated molecular changes in all of these regulatory phenotypes. One plausible driver of coordinated changes in different regulatory mechanisms is variation in transcription factor (TF) binding. Indeed, we found that SNPs that change predicted TF binding affinities are significantly enriched for associations with DNA methylation at nearby CpGs.
    PLoS Genetics 09/2014; 10(9):e1004663. · 8.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Schizophrenia is a complex psychiatric disorder with a lifetime morbidity rate of 0.5-1.0%. The pathophysiology of schizophrenia still remains obscure. Accumulating evidence indicates that DNA methylation, which is the addition of a methyl group to the cytosine in a CpG dinucleotide, might play an important role in the pathogenesis of schizophrenia.
    Frontiers in Genetics 08/2014; 5:280.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Psychiatric disease is believed to result from a combination of genetic vulnerability and environmental influence. At the crux are epigenetic modifications, which mediate the influence of environment on the genome. Twin and genome-wide association studies demonstrate a wide range of heritabilities across psychiatric disorders, while epidemiological and animal models implicate distinct developmental windows where environmental factors may interact with genetic vulnerability to confer risk. Certain developmental periods appear to be more prone to these influences including during gestation, in the early postnatal period, and during periods of major hormonal rearrangement. Here we review the role of environmental factors capable of epigenetic reprogramming during these periods and present evidence for the link between these modifications and disease. The cross tissue relevance of environmentally induced epigenetic change and its utility for identifying peripheral biomarkers is discussed.
    Neuroscience research. 08/2014;

Full-text (2 Sources)

Download
13 Downloads
Available from
Jun 1, 2014