Article

Brain glucose sensors play a significant role in the regulation of pancreatic glucose-stimulated insulin secretion.

Department of Medicine, University of Cambridge Metabolic Research Laboratories, and National Institute for Health Research, Cambridge Biomedical Research Centre, Cambridge, UK
Diabetes (Impact Factor: 7.9). 12/2011; 61(2):321-8. DOI: 10.2337/db11-1050
Source: PubMed

ABSTRACT As patients decline from health to type 2 diabetes, glucose-stimulated insulin secretion (GSIS) typically becomes impaired. Although GSIS is driven predominantly by direct sensing of a rise in blood glucose by pancreatic β-cells, there is growing evidence that hypothalamic neurons control other aspects of peripheral glucose metabolism. Here we investigated the role of the brain in the modulation of GSIS. To examine the effects of increasing or decreasing hypothalamic glucose sensing on glucose tolerance and insulin secretion, glucose or inhibitors of glucokinase, respectively, were infused into the third ventricle during intravenous glucose tolerance tests (IVGTTs). Glucose-infused rats displayed improved glucose handling, particularly within the first few minutes of the IVGTT, with a significantly lower area under the excursion curve within the first 10 min (AUC0-10). This was explained by increased insulin secretion. In contrast, infusion of the glucokinase inhibitors glucosamine or mannoheptulose worsened glucose tolerance and decreased GSIS in the first few minutes of IVGTT. Our data suggest a role for brain glucose sensors in the regulation of GSIS, particularly during the early phase. We propose that pharmacological agents targeting hypothalamic glucose-sensing pathways may represent novel therapeutic strategies for enhancing early phase insulin secretion in type 2 diabetes.

0 Bookmarks
 · 
157 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Prolyl endopeptidase (PREP) has been implicated in neuronal functions. Here we report that hypothalamic PREP is predominantly expressed in the ventromedial nucleus (VMH), where it regulates glucose-induced neuronal activation. PREP knockdown mice (Prep(gt/gt)) exhibited glucose intolerance, decreased fasting insulin, increased fasting glucagon levels, and reduced glucose-induced insulin secretion compared with wild-type controls. Consistent with this, central infusion of a specific PREP inhibitor, S17092, impaired glucose tolerance and decreased insulin levels in wild-type mice. Arguing further for a central mode of action of PREP, isolated pancreatic islets showed no difference in glucose-induced insulin release between Prep(gt/gt) and wild-type mice. Furthermore, hyperinsulinemic euglycemic clamp studies showed no difference between Prep(gt/gt) and wild-type control mice. Central PREP regulation of insulin and glucagon secretion appears to be mediated by the autonomic nervous system because Prep(gt/gt) mice have elevated sympathetic outflow and norepinephrine levels in the pancreas, and propranolol treatment reversed glucose intolerance in these mice. Finally, re-expression of PREP by bilateral VMH injection of adeno-associated virus-PREP reversed the glucose-intolerant phenotype of the Prep(gt/gt) mice. Taken together, our results unmask a previously unknown player in central regulation of glucose metabolism and pancreatic function.
    Proceedings of the National Academy of Sciences 07/2014; · 9.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ipragliflozin is a novel and selective sodium-glucose cotransporter 2 (SGLT2) inhibitor that induces sustained increases in urinary glucose excretion by inhibiting renal glucose reabsorption and thereby exerting a subsequent antihyperglycemic effect. Here, we examined the effect of ipragliflozin on body weight in high-fat diet-induced (HFD) obese rats. Treatment of ipragliflozin (10mg/kg once daily) reduced body weight despite a slight increase in food intake. Dual-energy X-ray absorptiometry and computed tomography demonstrated that the reduction in body weight was accompanied by reduced visceral and subcutaneous fat masses but not lean mass or bone mineral content. Analysis of plasma and urinary parameters suggested the possibility that ipragliflozin enhanced lipolysis and fatty acid oxidation, and indirect calorimetry showed that ipragliflozin decreased the heat production rate from glucose but increased the rate from fat and lowered the respiratory exchange ratio. In conclusion, these data demonstrate that ipragliflozin-induced urinary glucose excretion specifically reduces fat mass with steady calorie loss by promoting the use of fatty acids instead of glucose as an energy source in HFD rats. By improving hyperglycemia and promoting weight reduction, ipragliflozin may prove useful in treating type 2 diabetes in obese individuals.
    European journal of pharmacology 01/2014; · 2.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Molecules acting in the central nervous system play a critical role in the control of both energy and glucose homeostasis. The hypothalamus consists of a highly diverse collection of interconnected neurons and supporting glial cells that allow this region of the brain to sense and respond to a diverse range of hormonal and metabolic signals. We review recent advances in our understanding of the anatomical architecture and molecular mechanisms within the hypothalamus and how these facilitate the orchestration of systemic metabolic processes.
    Current Opinion in Pharmacology 09/2013; · 4.23 Impact Factor

Full-text (2 Sources)

Download
27 Downloads
Available from
May 31, 2014