Article

Magnetic resonance disease severity scale (MRDSS) for patients with multiple sclerosis: A longitudinal study

Department of Neurology, University of Massachusetts, Boston, MA, USA.
Journal of the neurological sciences (Impact Factor: 2.26). 12/2011; 315(1-2):49-54. DOI: 10.1016/j.jns.2011.11.040
Source: PubMed

ABSTRACT We previously described a composite MRI scale combining T1-lesions, T2-lesions and whole brain atrophy in multiple sclerosis (MS): the magnetic resonance disease severity scale (MRDSS).
Test strength of the MRDSS vs. individual MRI measures for sensitivity to longitudinal change.
We studied 84 MS patients over a 3.2±0.3 year follow-up. Baseline and follow-up T2-lesion volume (T2LV), T1-hypointense lesion volume (T1LV), and brain parenchymal fraction (BPF) were measured. MRDSS was the combination of standardized T2LV, T1/T2 ratio and BPF.
Patients had higher MRDSS at follow-up vs. baseline (p<0.001). BPF decreased (p<0.001), T1/T2 increased (p<0.001), and T2LV was unchanged (p>0.5). Change in MRDSS was larger than the change in MRI subcomponents. While MRDSS showed significant change in relapsing-remitting (RR) (p<0.001) and secondary progressive (SP) phenotypes (p<0.05), BPF and T1/T2 ratio changed only in RRMS (p<0.001). Longitudinal change in MRDSS was significantly different between RRMS and SPMS (p=0.0027); however, change in the individual MRI components did not differ. Evaluation with respect to predicting on-study clinical worsening as measured by EDSS revealed a significant association only for T2LV (p=0.038).
Results suggest improved sensitivity of MRDSS to longitudinal change vs. individual MRI measures. MRDSS has particularly high sensitivity in RRMS.

Full-text

Available from: Guy J Buckle, May 15, 2015
0 Followers
 · 
193 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: This review summarizes the recent data pertaining to the use of magnetic resonance imaging (MRI) in assessing brain and spinal cord involvement in multiple sclerosis (MS). Using MRI as a tool, investigators have made progress recently in understanding the substrate and mechanisms underlying the development and evolution of focal lesions and diffuse damage in MS. The application of refined MRI sequences has markedly improved the characterization of focal lesions, in particular cortical lesions. Promising improvements have been made to clarify the pathological specificity and sensitivity of MRI techniques by performing combined histopathologic-MRI correlation studies. The use of high-field (3 T) and ultra-high-field (UHF; >3 T) MRI has further facilitated the detection of both gray matter and white matter microstructural damage, and elucidated the topographic relationship of overt damage to venous blood vessels. The development of advanced MRI postprocessing tools has led to additional progress in detecting clinically relevant regional gray matter and white matter damage. MRI continues to play a pivotal role in the investigation of MS. Ongoing advances in MRI technology should further expand the current understanding of pathologic disease mechanisms and improve diagnostic, prognostic, and monitoring ability in patients with MS.
    Current opinion in neurology 06/2012; 25(4):402-9. DOI:10.1097/WCO.0b013e328354f63f · 5.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The objective of this study was to test a new version of the Magnetic Resonance Disease Severity Scale (MRDSS2), incorporating cerebral gray matter (GM) and spinal cord involvement from 3 T MRI, in modeling the relationship between MRI and physical disability or cognitive status in multiple sclerosis (MS). Fifty-five MS patients and 30 normal controls underwent high-resolution 3 T MRI. The patients had an Expanded Disability Status Scale score of 1.6±1.7 (mean±SD). The cerebral normalized GM fraction (GMF), the T2 lesion volume (T2LV), and the ratio of T1 hypointense LV to T2LV (T1/T2) were derived from brain images. Upper cervical spinal cord area (UCCA) was obtained from spinal cord images. A within-subject d-score (difference of MS from normal control) for each MRI component was calculated, equally weighted, and summed to form MRDSS2. With regard to the relationship between physical disability and MRDSS2 or its individual components, MRI-Expanded Disability Status Scale correlations were significant for MRDSS2 (r=0.33, P=0.013) and UCCA (r=-0.33, P=0.015), but not for GMF (P=0.198), T2LV (P=0.707), and T1/T2 (P=0.240). The inclusion of UCCA appeared to drive this MRI-disability relationship in MRDSS2. With regard to cognition, MRDSS2 showed a larger effect size (P=0.035) than its individual components [GMF (P=0.081), T2LV (P=0. 179), T1/T2 (P=0.043), and UCCA (P=0.818)] in comparing cognitively impaired with cognitively preserved patients (defined by the Minimal Assessment of Cognitive Function in MS). Both cerebral lesions (T1/T2) and atrophy (GMF) appeared to drive this relationship. We describe a new version of the MRDSS, which has been expanded to include cerebral GM and spinal cord involvement. MRDSS2 has concurrent validity with clinical status.
    Neuroreport 08/2014; 25(14). DOI:10.1097/WNR.0000000000000244 · 1.64 Impact Factor