Bone pain and extremely low bone mineral density due to severe vitamin D deficiency in celiac disease

Endocrine Section, Department of Internal Medicine, VU University Medical Center Amsterdam, Amsterdam, The Netherlands.
Archives of Osteoporosis 12/2011; 6(1-2):209-13. DOI: 10.1007/s11657-011-0059-7
Source: PubMed


Case report
A 29-year-old wheelchair-bound woman was presented to us by the gastroenterologist with suspected osteomalacia. She had lived in the Netherlands all her life and was born of Moroccan parents. Her medical history revealed iron deficiency, growth retardation, and celiac disease, for which she was put on a gluten-free diet. She had progressive bone pain since 2 years, difficulty with walking, and about 15 kg weight loss. She had a short stature, scoliosis, and pronounced kyphosis of the spine and poor condition of her teeth. Laboratory results showed hypocalcemia, an immeasurable serum 25-hydroxyvitamin D level, and elevated parathyroid hormone and alkaline phosphatase levels. Spinal radiographs showed unsharp, low contrast vertebrae. Bone mineral density measurement at the lumbar spine and hip showed a T-score of −6.0 and −6.5, respectively. A bone scintigraphy showed multiple hotspots in ribs, sternum, mandible, and long bones. A duodenal biopsy revealed villous atrophy (Marsh 3C) and positive antibodies against endomysium, transglutaminase, and gliadin, compatible with active celiac disease. A bone biopsy showed severe osteomalacia but normal bone volume. She was treated with calcium intravenously and later orally. Furthermore, she was treated with high oral doses of vitamin D and a gluten-free diet. After a few weeks of treatment, her bone pain decreased, and her muscle strength improved.

In this article, the pathophysiology and occurrence of osteomalacia as a complication of celiac disease are discussed. Low bone mineral density can point to osteomalacia as well as osteoporosis.

Download full-text


Available from: Nathalie Bravenboer, Sep 30, 2015
27 Reads
  • Source
    • "Osteomalacia arises in part because of a systemic deficiency in calcium and / or phosphate ions and the hormones responsible for their regulation—vitamin D and FGF23 . It is characterized by an increase in mineralization lag time and a decrease in mineralization degree ( Arnala et al . , 2001 ; Roschger et al . , 2003 ; Rabelink et al . , 2011 ; Cheung et al . , 2013 ) . It is assumed that the main cause of osteomalacia is a decreased rate of hydroxyapatite formation ( reflected by the parameter k 3 in the model ) caused by a low level of calcium and / or phosphate . However , the model predicts that a decrease in k 3 accounts only for a strong decrease in mineralization degr"
    [Show abstract] [Hide abstract]
    ABSTRACT: Defective bone mineralization has serious clinical manifestations, including deformities and fractures, but the regulation of this extracellular process is not fully understood. We have developed a mathematical model consisting of ordinary differential equations that describe collagen maturation, production and degradation of inhibitors, and mineral nucleation and growth. We examined the roles of individual processes in generating normal and abnormal mineralization patterns characterized using two outcome measures: mineralization lag time and degree of mineralization. Model parameters describing the formation of hydroxyapatite mineral on the nucleating centers most potently affected the degree of mineralization, while the parameters describing inhibitor homeostasis most effectively changed the mineralization lag time. Of interest, a parameter describing the rate of matrix maturation emerged as being capable of counter-intuitively increasing both the mineralization lag time and the degree of mineralization. We validated the accuracy of model predictions using known diseases of bone mineralization such as osteogenesis imperfecta and X-linked hypophosphatemia. The model successfully describes the highly nonlinear mineralization dynamics, which includes an initial lag phase when osteoid is present but no mineralization is evident, then fast primary mineralization, followed by secondary mineralization characterized by a continuous slow increase in bone mineral content. The developed model can potentially predict the function for a mutated protein based on the histology of pathologic bone samples from mineralization disorders of unknown etiology.
    Frontiers in Cell and Developmental Biology 09/2015; 3:51. DOI:10.3389/fcell.2015.00051
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: As women are the population most affected by multifactorial osteoporosis, research is focused on unraveling the underlying mechanism of osteoporosis induction in rats by combining ovariectomy (OVX) either with calcium, phosphorus, vitamin C and vitamin D2/D3 deficiency, or by administration of glucocorticoid (dexamethasone). Different skeletal sites of sham, OVX-Diet and OVX-Steroid rats were analyzed by Dual Energy X-ray Absorptiometry (DEXA) at varied time points of 0, 4 and 12 weeks to determine and compare the osteoporotic factors such as bone mineral density (BMD), bone mineral content (BMC), area, body weight and percent fat among different groups and time points. Comparative analysis and interrelationships among osteoporotic determinants by regression analysis were also determined. T scores were below-2.5 in OVX-Diet rats at 4 and 12 weeks post-OVX. OVX-diet rats revealed pronounced osteoporotic status with reduced BMD and BMC than the steroid counterparts, with the spine and pelvis as the most affected skeletal sites. Increase in percent fat was observed irrespective of the osteoporosis inducers applied. Comparative analysis and interrelationships between osteoporotic determinants that are rarely studied in animals indicate the necessity to analyze BMC and area along with BMD in obtaining meaningful information leading to proper prediction of probability of osteoporotic fractures. Enhanced osteoporotic effect observed in OVX-Diet rats indicates that estrogen dysregulation combined with diet treatment induces and enhances osteoporosis with time when compared to the steroid group. Comparative and regression analysis indicates the need to determine BMC along with BMD and area in osteoporotic determination.
    Medical science monitor: international medical journal of experimental and clinical research 06/2012; 18(6):BR199-207. DOI:10.12659/MSM.882895 · 1.43 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Osteomalacia is a generalized bone disorder characterized by impairment of mineralization, leading to accumulation of unmineralized matrix or osteoid in the skeleton. The clinical features of osteomalacia include musculoskeletal vague pain and muscle weakness. In its mild and early stages, osteomalacia may be misdiagnosed with variety of musculoskeletal diseases including osteopenia and osteoporosis, and for early diagnosis high rate of suspicion of osteomalacia is necessary. Our purpose was to determine the amount of bone mineral density (BMD) in patients with osteomalacia and to evaluate the efficiency of bone densitometry in these patients. Diagnosis of our patients was based on history, physical, laboratory and radiological findings and in three patients with bone biopsy and histological approval. BMD (gm/cm(2)) at the lumbar vertebrae (L2-L4) and femoral neck were measured by dual X-ray absorptiometry in 20 patients with osteomalacia (16 females and 4 males, age range 20 to 60 years, mean 39 years) before treatment, comparing with 28 matched healthy individuals, and their T scores were evaluated according to WHO criteria for the diagnosis of osteopenia and osteoporosis. 14 patients with osteomalacia (70%) had BMD in amount of osteoporosis in the lumbar spine, and 12 patients with osteomalacia (60%) had BMD in amount of osteoporosis in their femoral neck. 50% of the patients had T≥ -3. We concluded that bone densitometry may detect osteoporosis in up to 70% of patients with osteomalacia. Middle aged individuals with significant osteoporosis should be evaluated for osteomalacia, beside other causes of secondary osteoporosis. Measurement of BMD in patients with osteomalacia is helpful for assessment of the severity of bone condition and following management.
    Clinical Cases in Mineral and Bone Metabolism 09/2013; 10(3):180-182.
Show more