Article

Excess protein synthesis in FXS patient lymphoblastoid cells can be rescued with a p110β-selective inhibitor.

Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
Molecular Medicine (Impact Factor: 4.82). 12/2011; 18(1):336-45. DOI: 10.2119/molmed.2011.00363
Source: PubMed

ABSTRACT The fragile X mental retardation protein (FMRP) plays a key role for neurotransmitter-mediated signaling upstream of neuronal protein synthesis. Functional loss of FMRP causes the inherited intellectual disability fragile X syndrome (FXS), and leads to increased and stimulus-insensitive neuronal protein synthesis in FXS animal models. Previous studies suggested that excess protein synthesis mediated by dysregulated signal transduction contributes to the majority of neurological defects in FXS, and might be a promising target for therapeutic strategies in patients. However, possible impairments in receptor-dependent protein synthesis have not been evaluated in patient cells so far. Using quantitative fluorescent metabolic labeling, we demonstrate that protein synthesis is exaggerated and cannot be further increased by cytokine stimulation in human fragile X lymphoblastoid cells. Our previous work suggested that loss of FMRP-mediated regulation of protein expression and enzymatic function of the PI3K catalytic subunit p110β contributes to dysregulated protein synthesis in a mouse model of FXS. Here, we demonstrate that these molecular mechanisms are recapitulated in FXS patient cells. Furthermore, we show that treatment with a p110β-selective antagonist rescues excess protein synthesis in synaptoneurosomes from an FXS mouse model and in patient cells. Our work suggests that dys-regulated protein synthesis and PI3K activity in patient cells might be suitable biomarkers to quantify the efficacy of drugs to ameliorate molecular mechanisms underlying FXS, and could be used for drug screens to refine treatment strategies for individual patients. Moreover, we provide rationale to pursue p110β-targeting treatments as potential therapy in FXS, and possibly other autism spectrum disorders.

Download full-text

Full-text

Available from: Gary Bassell, Jun 21, 2015
0 Followers
 · 
127 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fragile X Syndrome (FXS) is the most frequent cause of inherited intellectual disability and autism. It is caused by the absence of the fragile X mental retardation 1 (FMR1) gene product, FMRP, an RNA-binding protein involved in the regulation of translation of a subset of brain mRNAs. In Fmr1 knockout (KO) mice, the absence of FMRP results in elevated protein synthesis in the brain as well as increased signaling of many translational regulators. Whether protein synthesis is also dysregulated in FXS patients is not firmly established. Here, we demonstrate that fibroblasts from FXS patients have significantly elevated rates of basal protein synthesis along with increased levels of phosphorylated mechanistic target of rapamycin (p-mTOR), phosphorylated extracellular signal regulated kinase 1/2 (p-ERK 1/2) and phosphorylated p70 ribosomal S6 kinase 1 (p-S6K1). Treatment with small molecules that inhibit S6K1, and a known FMRP target, phosphoinositide 3-kinase (P13K) catalytic subunit p110β, lowered the rates of protein synthesis in both control and patient fibroblasts. Our data thus demonstrate that fibroblasts from FXS patients may be a useful in vitro model to test the efficacy and toxicity of potential therapeutics prior to clinical trials, as well as for drug screening and designing personalized treatment approaches.This article is protected by copyright. All rights reserved
    Human Mutation 12/2014; 35(12). DOI:10.1002/humu.22699 · 5.05 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The PI3K enhancer PIKE links PI3K catalytic subunits to group 1 metabotropic glutamate receptors (mGlu1/5) and activates PI3K signaling. The roles of PIKE in synaptic plasticity and the etiology of mental disorders are unknown. Here, we show that increased PIKE expression is a key mediator of impaired mGlu1/5-dependent neuronal plasticity in mouse and fly models of the inherited intellectual disability fragile X syndrome (FXS). Normalizing elevated PIKE protein levels in FXS mice reversed deficits in molecular and cellular plasticity and improved behavior. Notably, PIKE reduction rescued PI3K-dependent and -independent neuronal defects in FXS. We further show that PI3K signaling is increased in a fly model of FXS and that genetic reduction of the Drosophila ortholog of PIKE, CenG1A rescued excessive PI3K signaling, mushroom body defects, and impaired short-term memory in these flies. Our results demonstrate a crucial role of increased PIKE expression in exaggerated mGlu1/5 signaling causing neuronal defects in FXS. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
    Cell Reports 04/2015; 11(5). DOI:10.1016/j.celrep.2015.03.060 · 7.21 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Distinct isoforms of the PI3K catalytic subunit have specialized functions in the brain, but their role in cognition is unknown. Here, we show that the catalytic subunit p110β plays an important role in prefrontal cortex (PFC)-dependent cognitive defects in mouse models of Fragile X syndrome (FXS), an inherited intellectual disability. FXS is caused by loss of function of the fragile X mental retardation protein (FMRP), which binds and translationally represses mRNAs. PFC-selective knockdown of p110β, an FMRP target that is translationally upregulated in FXS, reverses deficits in higher cognition in Fmr1 knockout mice. Genetic full-body reduction of p110β in Fmr1 knockout mice normalizes excessive PI3K activity, restores stimulus-induced protein synthesis, and corrects increased dendritic spine density and behavior. Notably, adult-onset PFC-selective Fmr1 knockdown mice show impaired cognition, which is rescued by simultaneous p110β knockdown. Our results suggest that FMRP-mediated control of p110β is crucial for neuronal protein synthesis and cognition. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
    Cell Reports 04/2015; 11(5). DOI:10.1016/j.celrep.2015.03.065 · 7.21 Impact Factor