Excess protein synthesis in FXS patient lymphoblastoid cells can be rescued with a p110β-selective inhibitor

Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
Molecular Medicine (Impact Factor: 4.51). 12/2011; 18(1):336-45. DOI: 10.2119/molmed.2011.00363
Source: PubMed


The fragile X mental retardation protein (FMRP) plays a key role for neurotransmitter-mediated signaling upstream of neuronal protein synthesis. Functional loss of FMRP causes the inherited intellectual disability fragile X syndrome (FXS), and leads to increased and stimulus-insensitive neuronal protein synthesis in FXS animal models. Previous studies suggested that excess protein synthesis mediated by dysregulated signal transduction contributes to the majority of neurological defects in FXS, and might be a promising target for therapeutic strategies in patients. However, possible impairments in receptor-dependent protein synthesis have not been evaluated in patient cells so far. Using quantitative fluorescent metabolic labeling, we demonstrate that protein synthesis is exaggerated and cannot be further increased by cytokine stimulation in human fragile X lymphoblastoid cells. Our previous work suggested that loss of FMRP-mediated regulation of protein expression and enzymatic function of the PI3K catalytic subunit p110β contributes to dysregulated protein synthesis in a mouse model of FXS. Here, we demonstrate that these molecular mechanisms are recapitulated in FXS patient cells. Furthermore, we show that treatment with a p110β-selective antagonist rescues excess protein synthesis in synaptoneurosomes from an FXS mouse model and in patient cells. Our work suggests that dys-regulated protein synthesis and PI3K activity in patient cells might be suitable biomarkers to quantify the efficacy of drugs to ameliorate molecular mechanisms underlying FXS, and could be used for drug screens to refine treatment strategies for individual patients. Moreover, we provide rationale to pursue p110β-targeting treatments as potential therapy in FXS, and possibly other autism spectrum disorders.

Download full-text


Available from: Gary Bassell,
24 Reads
  • Source
    • "). AFQ056 was found to be able to correct aberrant hippocampal dendritic spine morphology (Levenga et al., 2011; Pop et al., 2014), and rescue deficits in prepulse inhibition of acoustic startle response and abnormal social behaviors (Levenga et al., 2011; Gantois et al., 2013) in Fmr1 knockout mice. Treatment with mGluR1 antagonists (JNJ16259685 or LY367385) decreased repetitive and/or perseverative behaviors (Thomas et al., 2012), and rescued dysregulated synaptic protein synthesis in fragile X mice (Gross et al., 2010; Guo et al., 2012). These preclinical studies have been paving the way for treatments with mGluR antagonists in humans. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Autism spectrum disorders (ASDs) are genetically and clinically heterogeneous and lack effective medications to treat their core symptoms. Studies of syndromic ASDs caused by single gene mutations have provided insights into the pathophysiology of autism. Fragile X and Rett syndromes belong to the syndromic ASDs in which preclinical studies have identified rational targets for drug therapies focused on correcting underlying neural dysfunction. These preclinical discoveries are increasingly translating into exciting human clinical trials. Since there are significant molecular and neurobiological overlaps among ASDs, targeted treatments developed for fragile X and Rett syndromes may be helpful for autism of different etiologies. Here, we review the targeted pharmacological treatment of fragile X and Rett syndromes and discuss related issues in both preclinical studies and clinical trials of potential therapies for the diseases.
    Frontiers in Cellular Neuroscience 02/2015; 9:55. DOI:10.3389/fncel.2015.00055 · 4.29 Impact Factor
  • Source
    • "Moreover, a duplication in the gene locus of p110β, PIK3CB, most likely leading to enhanced p110β-mediated PI3K activity, has been associated with autism (Cusco et al., 2009), further supporting an essential role of p110β expression in neuronal function. A p110β-selective inhibitor reduced the elevated protein synthesis rates in FXS mice and FXS patient cells suggesting that p110β has a crucial function to control neuronal protein synthesis (Gross and Bassell, 2012), and may be a promising therapeutic target for FXS and other autism spectrum disorders. However, more work is needed to assess the role of p110β and other p110 subunits in neuronal protein synthesis regulation and how this may be altered in human disease. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The phosphoinositide 3-kinase (PI3K) complex plays important roles in virtually all cells of the body. The enzymatic activity of PI3K to phosphorylate phosphoinositides in the membrane is mediated by a group of catalytic and regulatory subunits. Among those, the class I catalytic subunits, p110α, p110β, p110γ, and p110δ, have recently drawn attention in the neuroscience field due to their specific dysregulation in diverse brain disorders. While in non-neuronal cells these catalytic subunits may have partially redundant functions, there is increasing evidence that in neurons their roles are more specialized, and confined to distinct receptor-dependent pathways. This review will summarize the emerging role of class I PI3K catalytic subunits in neurotransmitter-regulated neuronal signaling, and their dysfunction in a variety of neurological diseases, including fragile X syndrome, schizophrenia, and epilepsy. We will discuss recent literature describing the use of PI3K subunit-selective inhibitors to rescue brain disease-associated phenotypes in in vitro and animal models. These studies give rise to the exciting prospect that these drugs, originally designed for cancer treatment, may be repurposed as therapeutic drugs for brain disorders in the future.
    Frontiers in Molecular Neuroscience 02/2014; 7:12. DOI:10.3389/fnmol.2014.00012 · 4.08 Impact Factor
  • Source
    • "Studies in peripheral cells, such as lymphoblastoid cell lines (LCL), have been successfully employed to study dysregulation of protein expression in ASD [33]. In a systematic review Rossignol and Frye reported studies in LCLs that monitored abnormalities in ASD within distinct pathways, with the strongest evidence for immune dysregulation/inflammation and oxidative stress [34]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Known genetic variants can account for 10% to 20% of all cases with autism spectrum disorders (ASD). Overlapping cellular pathomechanisms common to neurons of the central nervous system (CNS) and in tissues of peripheral organs, such as immune dysregulation, oxidative stress and dysfunctions in mitochondrial and protein synthesis metabolism, were suggested to support the wide spectrum of ASD on unifying disease phenotype. Here, we studied in patient-derived lymphoblastoid cell lines (LCLs) how an ASD-specific mutation in ribosomal protein RPL10 (RPL10[H213Q]) generates a distinct protein signature. We compared the RPL10[H213Q] expression pattern to expression patterns derived from unrelated ASD patients without RPL10[H213Q] mutation. In addition, a yeast rpl10 deficiency model served in a proof-of-principle study to test for alterations in protein patterns in response to oxidative stress. Protein extracts of LCLs from patients, relatives and controls, as well as diploid yeast cells hemizygous for rpl10, were subjected to two-dimensional gel electrophoresis and differentially regulated spots were identified by mass spectrometry. Subsequently, Gene Ontology database (GO)-term enrichment and network analysis was performed to map the identified proteins into cellular pathways. The protein signature generated by RPL10[H213Q] is a functionally related subset of the ASD-specific protein signature, sharing redox-sensitive elements in energy-, protein- and redox-metabolism. In yeast, rpl10 deficiency generates a specific protein signature, harboring components of pathways identified in both the RPL10[H213Q] subjects' and the ASD patients' set. Importantly, the rpl10 deficiency signature is a subset of the signature resulting from response of wild-type yeast to oxidative stress. Redox-sensitive protein signatures mapping into cellular pathways with pathophysiology in ASD have been identified in both LCLs carrying the ASD-specific mutation RPL10[H213Q] and LCLs from ASD patients without this mutation. At pathway levels, this redox-sensitive protein signature has also been identified in a yeast rpl10 deficiency and an oxidative stress model. These observations point to a common molecular pathomechanism in ASD, characterized in our study by dysregulation of redox balance. Importantly, this can be triggered by the known ASD-RPL10[H213Q] mutation or by yet unknown mutations of the ASD cohort that act upstream of RPL10 in differential expression of redox-sensitive proteins.
    Molecular Autism 02/2014; 5(1):10. DOI:10.1186/2040-2392-5-10 · 5.41 Impact Factor
Show more