Article

SPARC expression induces cell cycle arrest via STAT3 signaling pathway in medulloblastoma cells

Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, One Illini Drive, Peoria, IL-61605, United States.
Biochemical and Biophysical Research Communications (Impact Factor: 2.28). 12/2011; 417(2):874-9. DOI: 10.1016/j.bbrc.2011.12.065
Source: PubMed

ABSTRACT Dynamic cell interaction with ECM components has profound influence in cancer progression. SPARC is a component of the ECM, impairs the proliferation of different cell types and modulates tumor cell aggressive features. We previously reported that SPARC expression significantly impairs medulloblastoma tumor growth in vivo. In this study, we demonstrate that expression of SPARC inhibits medulloblastoma cell proliferation. MTT assay indicated a dose-dependent reduction in tumor cell proliferation in adenoviral mediated expression of SPARC full length cDNA (Ad-DsRed-SP) in D425 and UW228 cells. Flow cytometric analysis showed that Ad-DsRed-SP-infected cells accumulate in the G2/M phase of cell cycle. Further, immunoblot and immunoprecipitation analyses revealed that SPARC induced G2/M cell cycle arrest was mediated through inhibition of the Cyclin-B-regulated signaling pathway involving p21 and Cdc2 expression. Additionally, expression of SPARC decreased STAT3 phosphorylation at Tyr-705; constitutively active STAT3 expression reversed SPARC induced G2/M arrest. Ad-DsRed-SP significantly inhibited the pre-established orthotopic tumor growth and tumor volume in nude-mice. Immunohistochemical analysis of tumor sections from mice treated with Ad-DsRed-SP showed decreased immunoreactivity for pSTAT3 and increased immunoreactivity for p21 compared to tumor section from mice treated with mock and Ad-DsRed. Taken together our studies further reveal that STAT3 plays a key role in SPARC induced G2/M arrest in medulloblastoma cells. These new findings provide a molecular basis for the mechanistic understanding of the effects of SPARC on medulloblastoma tumor cell proliferation.

0 Followers
 · 
147 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background: To investigate the effect of silibinin on proliferation and apoptosis in human gastric cancer cell line MGC803 and its possible mechanisms. Materials and Methods: Human gastric cancer cell line MGC803 cells were treated with various concentration of silibinin. Cellular viability was assessed by CCK-8 assay andapoptosis and cell cycle distribution by flow cytometry. Protein expression and mRNA of STAT3, and cell cycle and apoptosis regulated genes were detected by Western blotting and real-time polymerase chain reaction, respectively. Results: Silibinin inhibits growth of MGC803 cells in a dose-and time-dependent manner. Silibinin effectively induces apoptosis of MGC803 cells and arrests MGC803 cells in the G2/M phase of the cell cycle, while decreasing the protein expression of p-STAT3, and of STAT3 downstream target genes including Mcl-1, Bcl-xL, survivin at both protein and mRNA levels. In addition, silibinin caused an increase in caspase 3 and caspase 9 protein as well as mRNA levels. Silibinin caused G2/M phage arrest accompanied by a decrease in CDK1 and Cyclin B1 at protein and mRNA levels.. Conclusions: These results suggest that silibinin inhibits the proliferation of MGC803 cells, and it induces apoptosis and causes cell cycle arrest by down-regulating CDK1, cyclinB1, survivin, Bcl-xl, Mcl-1 and activating caspase 3 and caspase 9, potentially via the STAT3 pathway.
    Asian Pacific journal of cancer prevention: APJCP 08/2014; 15(16):6791-8. DOI:10.7314/APJCP.2014.15.16.6791 · 1.50 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Communication between the cell and its surrounding environment, consisting of proteinaceous (non-living material) and extracellular matrix (ECM), is important for bio-physiological and chemical signaling. This signaling results in a range of cellular activities, including cell division, adhesion, differentiation, invasion, migration, and angiogenesis. The ECM non-structural secretory glycoprotein called "secreted protein, acidic and rich in cysteine (SPARC), plays a significant role in altering cancer cell activity and the tumor's microenvironment (TME). However, the role of SPARC in cancer research has been the subject of controversy. This review mainly focuses on recent advances in understanding the contradictory nature of SPARC in relation to ECM assembly, cancer cell proliferation, adhesion, migration, apoptosis and tumor growth.
    Carcinogenesis 03/2014; DOI:10.1093/carcin/bgu072 · 5.27 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Our previous studies indicate that Secreted Protein Acidic and Rich in Cysteine (SPARC) expression suppressed medulloblastoma tumor growth in vitro and in vivo. Here we sought to determine the effect of SPARC expression in medulloblastoma cells to chemotherapeutic agents. In this study, we show that SPARC expression induces cisplatin resistance in medulloblastoma cells. We also demonstrate that the autophagy was involved in SPARC expression mediated resistance to cisplatin. Suppression of autophagy by either autophagy inhibitor, 3-methyladenosine (3MA) or Atg5 siRNA enhanced cisplatin sensitivity in SPARC expressed cells. Further, SPARC expression suppressed miR-let-7f-1 expression which resulted in disrupted repression of High Mobility Group Box 1 (HMGB1), a critical regulator of autophagy. We also show that HMGB1 is a direct target of miR-let-7f-1 and forced expression of HMGB1 cDNA enhanced cisplatin sensitivity in SPARC expressed cells. In summary, our results suggest that SPARC modulates cisplatin resistance by modulating the Let-7f-1 miRNA/HMGB1 axis in medulloblastoma cells.
    Cellular Signalling 07/2014; DOI:10.1016/j.cellsig.2014.06.014 · 4.47 Impact Factor

Full-text

Download
43 Downloads
Available from
Jun 10, 2014