Article

Electrical Characterization of SiPM as a Function of Test Frequency and Temperature

12/2011;
Source: arXiv

ABSTRACT Silicon Photomultipliers (SiPM) represent a promising alternative to
classical photomultipliers, for instance, for the detection of photons in high
energy physics and medical physics. In the present work, electrical
characterizations of test devices - manufactured by ST Microelectronics - are
presented. SiPMs with an area of 3.5x3.5 micron^2 and a cell pitch of 54 micron
were manufactured as arrays of 64x64 cells and exhibiting a fill factor of 31%.
The capacitance of SiPMs was measured as a function of reverse bias voltage at
frequencies ranging from from 20 Hz up to 1 MHz and temperatures from 300 K
down to 85 K. While leakage currents were measured at temperatures from 400 K
down to 85 K. Thus, the threshold voltage - i.e., voltage corresponding to that
at which the multiplication regime for the leakage current begins - could be
determined as a function of temperature. Finally, an electrical model suited to
reproduce the dependence of the frequency dependence of capacitance is
presented.

1 Bookmark
 · 
124 Views
  • Prikladnaia Mekhanika. 02/2009;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Silicon is used in radiation detectors and electronic devices. Nowadays, these devices achieving submicron technology are parts of integrated circuits of large to very large scale integration (VLSI). Silicon and silicon-based devices are commonly operated in many fields including particle physics experiments, nuclear medicine and space. Some of these fields present adverse radiation environments that may affect the operation of the devices. The particle energy deposition mechanisms by ionization and non-ionization processes are reviewed as well as the radiation-induced damage and its effect on device parameters evolution, depending on particle type, energy and fluence. The temporary or permanent damage inflicted by a single particle (single event effect) to electronic devices or integrated circuits is treated separately from the total ionizing dose (TID) effect for which the accumulated fluence causes degradation and from the displacement damage induced by the non-ionizing energy-loss (NIEL) deposition. Understanding of radiation effects on silicon devices has an impact on their design and allows the prediction of a specific device behaviour when exposed to a radiation field of interest.
    Reports on Progress in Physics 03/2007; 70(4):493. · 13.23 Impact Factor

Full-text (2 Sources)

View
51 Downloads
Available from
May 28, 2014