Response of the Photospheric Magnetic Field to the X2.2 Flare on 2011 February 15

The Astrophysical Journal Letters (Impact Factor: 6.35). 12/2011; 745(2). DOI: 10.1088/2041-8205/745/2/L17
Source: arXiv

ABSTRACT It is well known that the long-term evolution of the photospheric magnetic
field plays an important role in building up free energy to power solar
eruptions. Observations, despite being controversial, have also revealed a
rapid and permanent variation of the photospheric magnetic field in response to
the coronal magnetic field restructuring during the eruption. The Helioseismic
and Magnetic Imager instrument (HMI) on board the newly launched Solar Dynamics
Observatory (SDO) produces seeing-free full-disk vector magnetograms at
consistently high resolution and high cadence, which finally makes possible an
unambiguous and comprehensive study of this important back-reaction process. In
this study, we present a near disk-center, GOES -class X2.2 flare, which
occurred in NOAA AR 11158 on 2011 February 15. Using the magnetic field
measurements made by HMI, we obtained the first solid evidence of a rapid (in
about 30 minutes) and irreversible enhancement in the horizontal magnetic field
at the flaring magnetic polarity inversion line (PIL) by a magnitude of ~30%.
It is also shown that the photospheric field becomes more sheared and more
inclined. This field evolution is unequivocally associated with the flare
occurrence in this sigmoidal active region, with the enhancement area located
in between the two chromospheric flare ribbons and the initial conjugate hard
X-ray footpoints. These results strongly corroborate our previous conjecture
that the photospheric magnetic field near the PIL must become more horizontal
after eruptions, which could be related to the newly formed low-lying fields
resulted from the tether-cutting reconnection.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It is recently noted that solar eruptions can be associated with the contraction of coronal loops that are not involved in magnetic reconnection processes. In this paper, we investigate five coronal eruptions originating from four sigmoidal active regions, using high-cadence, high-resolution narrowband EUV images obtained by the Solar Dynamic Observatory (SDO}). The magnitudes of the flares associated with the eruptions range from the GOES-class B to X. Owing to the high-sensitivity and broad temperature coverage of the Atmospheric Imaging Assembly (AIA) onboard SDO, we are able to identify both the contracting and erupting components of the eruptions: the former is observed in cold AIA channels as the contracting coronal loops overlying the elbows of the sigmoid, and the latter is preferentially observed in warm/hot AIA channels as an expanding bubble originating from the center of the sigmoid. The initiation of eruption always precedes the contraction, and in the energetically mild events (B and C flares), it also precedes the increase in GOES soft X-ray fluxes. In the more energetic events, the eruption is simultaneous with the impulsive phase of the nonthermal hard X-ray emission. These observations confirm the loop contraction as an integrated process in eruptions with partially opened arcades. The consequence of contraction is a new equilibrium with reduced magnetic energy, as the contracting loops never regain their original positions. The contracting process is a direct consequence of flare energy release, as evidenced by the strong correlation of the maximal contracting speed, and strong anti-correlation of the time delay of contraction relative to expansion, with the peak soft X-ray flux. This is also implied by the relationship between contraction and expansion, i.e., their timing and speed.
    The Astrophysical Journal 08/2012; 757(2). · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the past two decades, the complex nature of sunspots has been disclosed with high-resolution observations. One of the most important findings is the "uncombed" penumbral structure, where a more horizontal magnetic component carrying most of Evershed Flows is embedded in a more vertical magnetic background (Solanki & Montavon 1993). The penumbral bright grains are locations of hot upflows and dark fibrils are locations of horizontal flows that are guided by nearly horizontal magnetic field. On the other hand, it was found that flares may change the topology of sunspots in $\delta$ configuration: the structure at the flaring polarity inversion line becomes darkened while sections of peripheral penumbrae may disappear quickly and permanently associated with flares (Liu et al. 2005). The high spatial and temporal resolution observations obtained with Hinode/ SOT provide an excellent opportunity to study the evolution of penumbral fine structure associated with major flares. Taking advantage of two near-limb events, we found that in sections of peripheral penumbrae swept by flare ribbons, the dark fibrils completely disappear, while the bright grains evolve into faculae that are signatures of vertical magnetic flux tubes. The corresponding magnetic fluxes measured in the decaying penumbrae show stepwise changes temporally correlated with the flares. These observations suggest that the horizontal magnetic field component of the penumbra could be straightened upward (i.e., turning from horizontal to vertical) due to magnetic field restructuring associated with flares, which results in the transition of penumbrae to faculae.
    The Astrophysical Journal 03/2012; 748(2). · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The magnetic non-potentiality is important for understanding flares and other solar activities in active regions (ARs). Five non-potential parameters, i.e., electric current, current helicity, source field, photospheric free energy, and angular shear, are calculated in this work to quantify the non-potentiality of NOAA AR 11158. Benefited from high spatial resolution, high cadence, and continuously temporal coverage of vector magnetograms from the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory, both the long-term evolution of the AR and the rapid change during flares have been studied. We confirmed that, comparing with the magnetic flux, the magnetic non-potentiality has a closer connection with the flare, and the emerging flux regions are important for the magnetic non-potentiality and flares. The main results of this work are as follows. (1) The vortex in the source field directly displays the deflection of horizontal magnetic field. The deflection is corresponding to the fast rotated sunspot with a time delay, which suggests that the sunspot rotation leads to an increase of the non-potentiality. (2) Two areas that have evident changes of the azimuth of the vector magnetic field are found near the magnetic polarity inversion line. The change rates of the azimuth are about 1.3 deg/h and 3.6 deg/h, respectively. (3) Rapid and prominent increases are found in the variation of helicity during four flares in their initial brightening regions. The recovery of the increases takes 3-4 h for the two biggest flares (X2.2 and M6.6), while only takes about 2 h for the other two smaller flares (M2.2 and M1.6).
    Chinese Journal of Astronomy and Astrophysics 09/2012; · 0.89 Impact Factor

Full-text (2 Sources)

Available from
Jun 10, 2014