Article

Constraints on the Redshift Evolution of the L_X-SFR Relation from the Cosmic X-Ray Backgrounds

Max-Planck Institut fuer Astrophysik, 85741, Garching, Germany; Space Research Institute of Russian Academy of Sciences, 117997, Moscow, Russia; Astronomy Department, Harvard University, 02138, Cambridge, MA, USA
Monthly Notices of the Royal Astronomical Society (Impact Factor: 5.52). 08/2011; 421(1). DOI: 10.1111/j.1365-2966.2011.20292.x
Source: arXiv

ABSTRACT Observations of local star forming galaxies have revealed a correlation
between the rate at which galaxies form stars and their X-Ray luminosity. We
combine this correlation with the most recent observational constraints on the
integrated star formation rate density, and find that star forming galaxies
account for 5-20% of the total soft and hard X-ray backgrounds, where the
precise number depends on the energy band and the assumed average X-ray
spectral energy distribution of the galaxies below ~20 keV. If we combine the
L_X-SFR relation with recently derived star formation rate function, then we
find that star forming galaxies whose X-ray flux falls well (more than a factor
of 10) below the detection thresholds of the Chandra Deep Fields, can fully
account for the unresolved soft X-ray background, which corresponds to ~6% of
its total. Motivated by this result, we put limits on the allowed redshift
evolution of the parameter c_X \equiv L_X/SFR, and/or its evolution towards
lower and higher star formation rates. If we parametrize the redshift evolution
of c_X ~ (1+z)^b, then we find that b \leq 1.3 (95% CL). On the other hand, the
observed X-ray luminosity functions (XLFs) of star forming galaxies indicate
that c_X may be increasing towards higher redshifts and/or higher star
formation rates at levels that are consistent with the X-ray background, but
possibly at odds with the locally observed L_X-SFR relation.

0 Bookmarks
 · 
66 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Imaging the Universe during the first hundreds of millions of years remains one of the exciting challenges facing modern cosmology. Observations of the redshifted 21 cm line of atomic hydrogen offer the potential of opening a new window into this epoch. This will transform our understanding of the formation of the first stars and galaxies and of the thermal history of the Universe. A new generation of radio telescopes is being constructed for this purpose with the first results starting to trickle in. In this review, we detail the physics that governs the 21 cm signal and describe what might be learnt from upcoming observations. We also generalize our discussion to intensity mapping of other atomic and molecular lines.
    Reports on Progress in Physics 08/2012; 75(8):086901. · 13.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: High redshift galaxies permit the study of the formation and evolution of X-ray binary populations on cosmological timescales, probing a wide range of metallicities and star-formation rates. In this paper, we present results from a large scale population synthesis study that models the X-ray binary populations from the first galaxies of the universe until today. We use as input to our modeling the Millennium II Cosmological Simulation and the updated semi-analytic galaxy catalog by Guo et al. (2011) to self-consistently account for the star formation history and metallicity evolution of the universe. Our modeling, which is constrained by the observed X-ray properties of local galaxies, gives predictions about the global scaling of emission from X-ray binary populations with properties such as star-formation rate and stellar mass, and the evolution of these relations with redshift. Our simulations show that the X-ray luminosity density (X-ray luminosity per unit volume) from X-ray binaries in our Universe today is dominated by low-mass X-ray binaries, and it is only at z>2.5 that high-mass X-ray binaries become dominant. We also find that there is a delay of ~1.1 Gyr between the peak of X-ray emissivity from low-mass Xray binaries (at z~2.1) and the peak of star-formation rate density (at z~3.1). The peak of the X-ray luminosity from high-mass X-ray binaries (at z~3.9), happens ~0.8 Gyr before the peak of the star-formation rate density, which is due to the metallicity evolution of the Universe.
    The Astrophysical Journal 06/2012; 764(1). · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Massive stars at redshifts z > 6 are predicted to have played a pivotal role in cosmological reionization as luminous sources of ultra-violet (UV) photons. However, the remnants of these massive stars could be equally important as X-ray luminous (L_X 1e38 erg/s) high-mass X-ray binaries (HMXBs). Because the absorption cross section of neutral hydrogen decreases sharply with photon energy (proportional to the inverse cube), X-rays can escape more freely than UV photons from the star-forming regions in which they are produced, allowing HMXBs to make a potentially significant contribution to the ionizing X-ray background during reionization. In this paper, we explore the ionizing power of HMXBs at redshifts z > 6 using a Monte Carlo model for a coeval stellar population of main sequence stars and HMXBs. Using the archetypal Galactic HMXB Cygnus X-1 as our template, we propose a composite HMXB spectral energy distribution consisting of black-body and power-law components, whose contributions depend on the accretion state of the system. We determine the time-dependent ionizing power of a combined population of UV-luminous stars and X-ray luminous HMXBs, and deduce fitting formulae for the boost in the population's ionizing power arising from HMXBs; these fits allow for simple implementation of HMXB feedback in numerical simulations. Based on this analysis, we estimate the contribution of high redshift HMXBs to the present-day soft X-ray background, and we show that it is a factor of ~100-1000 smaller than the observed limit. Finally, we discuss the implications of our results for the role of HMXBs in reionization and in high redshift galaxy formation.
    The Astrophysical Journal 11/2012; · 6.73 Impact Factor

Full-text

View
1 Download
Available from