MASSIV: Mass Assembly Survey with SINFONI in VVDS. III. Evidence for positive metallicity gradients in z~1.2 star-forming galaxies

Astronomy and Astrophysics (Impact Factor: 4.48). 11/2011; DOI: 10.1051/0004-6361/201117718
Source: arXiv

ABSTRACT A key open issue for galaxy evolution and formation models is the
understanding of the different mechanisms of galaxy assembly at various cosmic
epochs. The aim of this study is to derive the global and spatially-resolved
metal content in high-redshift galaxies. Using VLT/SINFONI IFU spectroscopy of
a first sample of 50 galaxies at z~1.2 in the MASSIV survey, we are able to
measure the Ha and [NII]6584 emission lines. Using the N2 ratio as a proxy for
oxygen abundance in the interstellar medium, we measure the metallicity of the
sample galaxies. We develop a tool to extract spectra in annular regions of
these galaxies, leading to a spatially-resolved estimate of the oxygen
abundance in each galaxy. We derive a metallicity gradient for 26 galaxies in
our sample and discover a significant fraction of galaxies with a "positive"
gradient. Using a simple chemical evolution model, we derive infall rates of
pristine gas onto the disks. Seven galaxies display a positive gradient at a
high confidence level. Four out of these are interacting and one is a chain
galaxy. We suggest that interactions might be responsible for shallowing and
even inverting the abundance gradient. We also identify two interesting
correlations in our sample: a) galaxies with higher gas velocity dispersion
have shallower/positive gradients; and b) metal-poor galaxies tend to show a
positive gradient whereas metal-rich ones tend to show a negative one. This
last observation can be explained by the infall of metal-poor gas into the
center of the disks. We address the question of the origin of this infall under
the influence of gas flows triggered by interactions and/or cold gas accretion.

1 Bookmark
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The chemical evolution of galaxies on a cosmological timescale is still a matter of debate despite the increasing number of available data provided by spectroscopic surveys of star-forming galaxies at different redshifts. The fundamental relations involving metallicity, such as the mass-metallicity relation (MZR) or the fundamental-metallicity relation, give controversial results about the reality of evolution of the chemical content of galaxies at a given stellar mass. In this work we shed some light on this issue using the completeness reached by the 20k bright sample of the zCOSMOS survey and using for the first time the nitrogen-to-oxygen ratio (N/O) as a tracer of the gas phase chemical evolution of galaxies that is independent of the star formation rate. Emission-line galaxies both in the SDSS and 20k zCOSMOS bright survey were used to study the evolution from the local Universe of the $MZR up to a redshift of 1.32 and the relation between stellar mass and nitrogen-to-oxygen ratio (MNOR) up to a redshift of 0.42 using the N2S2 parameter. All the physical properties derived from stellar continuum and gas emission-lines, including stellar mass, star formation rates, metallicity and N/O, were calculated in a self-consistent way over the full redshift range. We confirm the trend to find lower metallicities in galaxies of a given stellar mass in a younger Universe. This trend is even observed when taking possible selection effects into account that are due to the observed larger median star formation rates for galaxies at higher redshifts. We also find a significant evolution of the MNOR up to z = 0.4. Taking the slope of the O/H vs. N/O relation into account for the secondary-nitrogen production regime, the observed evolution of the MNOR is consistent with the trends found for both the MZR and its equivalent relation using new expressions to reduce its dependence on SFR.
    Astronomy and Astrophysics 10/2012; 549. · 4.48 Impact Factor

Full-text (2 Sources)

Available from
May 21, 2014