Resolving the Galaxies within a Giant Lya Nebula: Witnessing the Formation of a Galaxy Group?

The Astrophysical Journal (Impact Factor: 6.73). 11/2011; 752(2). DOI: 10.1088/0004-637X/752/2/86
Source: arXiv

ABSTRACT Detailed analysis of the substructure of Lya nebulae can put important
constraints on the physical mechanisms at work and the properties of galaxies
forming within them. Using high resolution HST imaging of a Lya nebula at
z~2.656, we have taken a census of the compact galaxies in the vicinity, used
optical/near-infrared colors to select system members, and put constraints on
the morphology of the spatially-extended emission. The system is characterized
by (a) a population of compact, low luminosity (~0.1 L*) sources --- 17
primarily young, small (Re~1-2 kpc), disky galaxies including an obscured AGN
--- that are all substantially offset (>20 kpc) from the line-emitting nebula;
(b) the lack of a central galaxy at or near the peak of the Lya emission; and
(c) several nearly coincident, spatially extended emission components --- Lya,
HeII, and UV continuum --- that are extremely smooth. These morphological
findings are difficult to reconcile with theoretical models that invoke
outflows, cold flows, or resonant scattering, suggesting that while all of
these physical phenomena may be occurring, they are not sufficient to explain
the powering and large extent of Lya nebulae. In addition, although the compact
galaxies within the system are irrelevant as power sources, the region is
significantly overdense relative to the field galaxy population (by at least a
factor of 4). These observations provide the first estimate of the luminosity
function of galaxies within an individual Lya nebula system, and suggest that
large Lya nebulae may be the seeds of galaxy groups or low-mass clusters.

  • [Show abstract] [Hide abstract]
    ABSTRACT: We present a new model for the observed Lyα blobs (LABs) within the context of the standard cold dark matter model. In this model, LABs are the most massive halos with the strongest clustering (protoclusters) undergoing extreme starbursts in the high-z universe. Aided by calculations of detailed radiative transfer of Lyα photons through ultrahigh resolution (159 pc), large-scale (≥30 Mpc) adaptive mesh refinement cosmological hydrodynamic simulations with galaxy formation, this model is shown to be able to, for the first time, reproduce simultaneously the global Lyα luminosity function and the luminosity-size relation of the observed LABs. Physically, a combination of dust attenuation of Lyα photons within galaxies, clustering of galaxies, and the complex propagation of Lyα photons through the circumgalactic and intergalactic medium gives rise to the large sizes and the irregular isophotal shapes of LABs that are frequently observed. A generic and unique prediction of this model is that there should be strong far-infrared (FIR) sources within each LAB with the most luminous FIR source likely representing the gravitational center of the protocluster, not necessarily the apparent center of the Lyα emission of the LAB or the most luminous optical source. Upcoming ALMA observations should unambiguously test this prediction. If verified, LABs will provide very valuable laboratories for studying the formation of galaxies in the most overdense regions of the universe at a time when the global star formation was the most vigorous.
    The Astrophysical Journal 09/2013; 775(2):112. · 6.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: By combining data from the NASA Wide-field Infrared Survey Explorer (WISE) mission with optical spectroscopy from the W. M. Keck telescope, we discover a mid-IR color criterion that yields a 78% success rate in identifying rare, typically radio-quiet, 1.6 z 4.6 dusty Lyα emitters (LAEs). Of these, at least 37% have emission extended on scales of 30-100 kpc and are considered Lyα "blobs" (LABs). The objects have a surface density of only ~0.1 deg–2, making them rare enough that they have been largely missed in deep, small area surveys. We measured spectroscopic redshifts for 92 of these galaxies, and find that the LAEs (LABs) have a median redshift of 2.3 (2.5). The WISE photometry coupled with data from Herschel (Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA) reveals that these galaxies are in the Hyper Luminous IR galaxy regime (L IR 1013-1014 L ☉) and have warm colors. They are typically more luminous and warmer than other dusty, z ~ 2 populations such as submillimeter-selected galaxies and dust-obscured galaxies. These traits are commonly associated with the dust being illuminated by intense active galactic nucleus activity. We hypothesize that the combination of spatially extended Lyα, large amounts of warm IR-luminous dust, and rarity (implying a short-lived phase) can be explained if the galaxies are undergoing brief, intense "feedback" transforming them from an extreme dusty starburst/QSO into a mature galaxy.
    The Astrophysical Journal 05/2013; 769(2):91. · 6.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We have used the SINFONI near-infrared integral field unit on the Very Large Telescope to resolve the optical emission line structure of one of the brightest (L Lyα 1044 erg s–1) and nearest (z 2.38) of all Lyα blobs (LABs). The target, known in the literature as object "B1", lies at a redshift where the main optical emission lines are accessible in the observed near-infrared. We detect luminous [O III] λλ4959, 5007 and Hα emission with a spatial extent of at least 32 × 40 kpc (4'' × 5''). The dominant optical emission line component shows relatively broad lines (600-800 km s–1, FWHM) and line ratios consistent with active galactic nucleus (AGN) photoionization. The new evidence for AGN photoionization, combined with previously detected C IV and luminous, warm infrared emission, suggest that B1 is the site of a hidden quasar. This is confirmed by the fact that [O II] is relatively weak compared with [O III] (extinction-corrected [O III]/[O II] of about 3.8), which is indicative of a high, Seyfert-like ionization parameter. From the extinction-corrected [O III] luminosity we infer a bolometric AGN luminosity of ~3 × 1046 erg s–1, and further conclude that the obscured AGN may be Compton-thick given existing X-ray limits. The large line widths observed are consistent with clouds moving within the narrow-line region of a luminous QSO. The AGN scenario is capable of producing sufficient ionizing photons to power the Lyα, even in the presence of dust. By performing a census of similar objects in the literature, we find that virtually all luminous LABs harbor obscured quasars. Based on simple duty-cycle arguments, we conclude that AGNs are the main drivers of the Lyα in LABs rather than the gravitational heating and subsequent cooling suggested by cold stream models. We also conclude that the empirical relation between LABs and overdense environments at high redshift must be due to a more fundamental correlation between AGNs (or massive galaxies) and environment.
    The Astrophysical Journal 06/2013; 771(2):89. · 6.73 Impact Factor

Full-text (2 Sources)

Available from
Jun 5, 2014