Evidence for Type Ia Supernova Diversity from Ultraviolet Observations with the Hubble Space Telescope

The Astrophysical Journal (Impact Factor: 5.99). 10/2011; 749(2). DOI: 10.1088/0004-637X/749/2/126
Source: arXiv


We present ultraviolet (UV) spectroscopy and photometry of four Type Ia
supernovae (SNe 2004dt, 2004ef, 2005M, and 2005cf) obtained with the UV prism
of the Advanced Camera for Surveys on the Hubble Space Telescope. This dataset
provides unique spectral time series down to 2000 Angstrom. Significant
diversity is seen in the near maximum-light spectra (~ 2000--3500 Angstrom) for
this small sample. The corresponding photometric data, together with archival
data from Swift Ultraviolet/Optical Telescope observations, provide further
evidence of increased dispersion in the UV emission with respect to the
optical. The peak luminosities measured in uvw1/F250W are found to correlate
with the B-band light-curve shape parameter dm15(B), but with much larger
scatter relative to the correlation in the broad-band B band (e.g., ~0.4 mag
versus ~0.2 mag for those with 0.8 < dm15 < 1.7 mag). SN 2004dt is found as an
outlier of this correlation (at > 3 sigma), being brighter than normal SNe Ia
such as SN 2005cf by ~0.9 mag and ~2.0 mag in the uvw1/F250W and uvm2/F220W
filters, respectively. We show that different progenitor metallicity or
line-expansion velocities alone cannot explain such a large discrepancy.
Viewing-angle effects, such as due to an asymmetric explosion, may have a
significant influence on the flux emitted in the UV region. Detailed modeling
is needed to disentangle and quantify the above effects.

Download full-text


Available from: Cecilia Kozma, Sep 29, 2015
30 Reads
  • Source
    • "Unfortunately, there are many factors involved in supernova light production, dispersal and observations. For many reasons SNe Ia information suffers significant intrinsic errors and each event must be thoroughly analyzed before use as a distance indicator[10] [11]. The situation is now known to be quite complicated with significant systematic uncertainties[12] and fluxaveraging SNe observations has a significant impact on the calculated distanceredshift values[13]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: We derive several, detailed relationships in terms of the Friedmann-Robertson-Walker (FRW) generalization which describe the Universe during both the radiation and matter dominated epochs. We explicitly provide for the influence of radiation, rather than burying this term within the matter term. Several models allow the cosmological constant (CC) to vary with universe expansion in differing manners. We evaluate these and other popular models including the ΛCDM(standard model), quintessence as presented by Vishwakarma, Equation of State (EoS) and the Carmeli model with data from the 580 Union2.1 supernovae type Ia collection, using several minimization routines and find models built about the CC, the ΛCDM models, fare no better than those without.
    International Journal of Theoretical Physics 08/2014; 53(8). DOI:10.1007/s10773-014-2061-5 · 1.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present an analysis of the maximum light, near ultraviolet (NUV; 2900-5500 A) spectra of 32 low redshift (0.001<z<0.08) Type Ia supernovae (SNe Ia), obtained with the Hubble Space Telescope (HST). We combine this spectroscopic sample with high-quality gri light curves obtained with robotic telescopes to measure photometric parameters, such as stretch, optical colour, and brightness. By comparing our data to a comparable sample of SNe Ia at intermediate-z (0.4<z<0.9), we detect modest spectral evolution (3-sigma), in the sense that our mean low-z NUV spectrum has a depressed flux compared to its intermediate-z counterpart. We also see a strongly increased dispersion about the mean with decreasing wavelength, confirming the results of earlier surveys. These trends are consistent with changes in metallicity as predicted by contemporary SN Ia spectral models. We also examine the properties of various NUV spectral diagnostics in the individual spectra. We find a general correlation between stretch and the velocity (or position) of many NUV spectral features. In particular, we observe that higher stretch SNe have larger Ca II H&K velocities, that also correlate with host galaxy stellar mass. This latter trend is probably driven by the well-established correlation between stretch and stellar mass. We find no trends between UV spectral features and optical colour. Mean spectra constructed according to whether the SN has a positive or negative Hubble residual show very little difference at NUV wavelengths, indicating that the NUV evolution and variation we identify do not directly correlate with Hubble residuals. Our work confirms and strengthens earlier conclusions regarding the complex behaviour of SNe Ia in the NUV spectral region, but suggests the correlations we find are more useful in constraining progenitor models than improving the use of SNe Ia as cosmological probes.
    Monthly Notices of the Royal Astronomical Society 05/2012; 426(3). DOI:10.1111/j.1365-2966.2012.21909.x · 5.11 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present 32 epochs of optical (3300-9700 \AA) spectrophotometric observations of the nearby quintessential "normal" type Ia supernova (SN Ia) SN 2011fe in the galaxy M101, extending from -15 to +97 d with respect to B-band maximum, obtained by the Nearby Supernova Factory collaboration. SN 2011fe is the closest (\mu = 29.04) and brightest (Bmax = 9.94 mag) SN Ia observed since the advent of modern large scale programs for the intensive periodic followup of supernovae. Both synthetic light curve measurements and spectral feature analysis attest to the normality of SN 2011fe. There is very little evidence for reddening in its host galaxy. The homogeneous calibration, intensive time sampling, and high signal-to-noise ratio of the data set make it unique. Thus it is ideal for studying the physics of SN Ia explosions in detail, and for furthering the use of SNe Ia as standardizable candles for cosmology. Several such applications are shown, from the creation of a bolometric light curve and measurement of the 56Ni mass, to the simulation of detection thresholds for unburned carbon, direct comparisons with other SNe Ia, and existing spectral templates.
    Astronomy and Astrophysics 02/2013; 554. DOI:10.1051/0004-6361/201221008 · 4.38 Impact Factor
Show more