Article

CANDELS: The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey

The Astrophysical Journal Supplement Series (Impact Factor: 14.14). 05/2011; DOI: 10.1088/0067-0049/197/2/35
Source: arXiv

ABSTRACT The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS)
is designed to document the first third of galactic evolution, over the
approximate redshift (z) range 8--1.5. It will image >250,000 distant galaxies
using three separate cameras on the Hubble Space Telescope, from the
mid-ultraviolet to the near-infrared, and will find and measure Type Ia
supernovae at z>1.5 to test their accuracy as standardizable candles for
cosmology. Five premier multi-wavelength sky regions are selected, each with
extensive ancillary data. The use of five widely separated fields mitigates
cosmic variance and yields statistically robust and complete samples of
galaxies down to a stellar mass of 10^9 M_\odot to z \approx 2, reaching the
knee of the ultraviolet luminosity function (UVLF) of galaxies to z \approx 8.
The survey covers approximately 800 arcmin^2 and is divided into two parts. The
CANDELS/Deep survey (5\sigma\ point-source limit H=27.7 mag) covers \sim 125
arcmin^2 within GOODS-N and GOODS-S. The CANDELS/Wide survey includes GOODS and
three additional fields (EGS, COSMOS, and UDS) and covers the full area to a
5\sigma\ point-source limit of H \gtrsim 27.0 mag. Together with the Hubble
Ultra Deep Fields, the strategy creates a three-tiered "wedding cake" approach
that has proven efficient for extragalactic surveys. Data from the survey are
nonproprietary and are useful for a wide variety of science investigations. In
this paper, we describe the basic motivations for the survey, the CANDELS team
science goals and the resulting observational requirements, the field selection
and geometry, and the observing design. The Hubble data processing and products
are described in a companion paper.

1 Bookmark
 · 
204 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The first deep blank-field 450um map (1-sigma~1.3mJy) from the SCUBA-2 Cosmology Legacy Survey (S2CLS), conducted with the James Clerk Maxwell Telescope (JCMT) is presented. Our map covers 140 arcmin^2 of the COSMOS field, in the footprint of the HST CANDELS area. Using 60 submillimetre galaxies (SMGs) detected at >3.75-sigma, we evaluate the number counts of 450um-selected galaxies with flux densities S_450>5mJy. The 8-arcsec JCMT beam and high sensitivity of SCUBA-2 now make it possible to directly resolve a larger fraction of the cosmic infrared background (CIB, peaking at ~200um) into the individual galaxies responsible for its emission than has previously been possible at this wavelength. At S_450>5mJy we resolve (7.4[+/-]0.7)x10^-2 MJy/sr of the CIB at 450um (equivalent to 16[+/-]7% of the absolute brightness measured by COBE at this wavelength) into point sources. A further ~40% of the CIB can be recovered through a statistical stack of 24um emitters in this field, indicating that the majority (~60%) of the CIB at 450um is emitted by galaxies with S_450>2mJy. The average redshift of 450um emitters identified with an optical/near-infrared counterpart is estimated to be =1.3, implying that the galaxies in the sample are in the ultraluminous class (L_IR~1.1x10^12 L_sun). If the galaxies contributing to the statistical stack lie at similar redshifts, then the majority of the CIB at 450um is emitted by galaxies in the LIRG class with L_IR>3.6x10^11 L_sun.
    Monthly Notices of the Royal Astronomical Society 11/2012; 432(1). · 5.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Cluster Lensing And Supernova survey with Hubble (CLASH) is a 524-orbit Multi-Cycle Treasury Program to use the gravitational lensing properties of 25 galaxy clusters to accurately constrain their mass distributions. The survey, described in detail in this paper, will definitively establish the degree of concentration of dark matter in the cluster cores, a key prediction of structure formation models. The CLASH cluster sample is larger and less biased than current samples of space-based imaging studies of clusters to similar depth, as we have minimized lensing-based selection that favors systems with overly dense cores. Specifically, 20 CLASH clusters are solely X-ray selected. The X-ray-selected clusters are massive (kT > 5 keV) and, in most cases, dynamically relaxed. Five additional clusters are included for their lensing strength (θEin > 35'' at zs = 2) to optimize the likelihood of finding highly magnified high-z (z > 7) galaxies. A total of 16 broadband filters, spanning the near-UV to near-IR, are employed for each 20-orbit campaign on each cluster. These data are used to measure precise (σ z ~ 0.02(1 + z)) photometric redshifts for newly discovered arcs. Observations of each cluster are spread over eight epochs to enable a search for Type Ia supernovae at z > 1 to improve constraints on the time dependence of the dark energy equation of state and the evolution of supernovae. We present newly re-derived X-ray luminosities, temperatures, and Fe abundances for the CLASH clusters as well as a representative source list for MACS1149.6+2223 (z = 0.544).
    The Astrophysical Journal Supplement Series 03/2012; 199(2):25. · 14.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a new determination of the UV galaxy luminosity function (LF) at redshift z ~ 7 and z ~ 8, and a first estimate at z ~ 9. An accurate determination of the form and evolution of the LF at high z is crucial for improving our knowledge of early galaxy evolution and cosmic reionization. Our analysis exploits fully the new, deepest WFC3/IR imaging from our HST UDF12 campaign, and includes a new, consistent analysis of all appropriate, shallower/wider-area HST data. Our new measurement of the evolving LF at z ~ 7-8 is based on a final catalogue of ~600 galaxies, and involves a step-wise maximum likelihood determination based on the redshift probability distribution for each object; this makes full use of the 11-band imaging now available in the HUDF, including the new UDF12 F140W data, and the deep Spitzer IRAC imaging. The final result is a determination of the z ~ 7 LF extending down to M_UV = -16.75, and the z ~ 8 LF down to M_UV = -17.00. Fitting a Schechter function, we find M* = -19.90 (+0.23/-0.28), log phi* = -2.96 (+0.18/-0.23), and a faint-end slope alpha=-1.90 (+0.14/-0.15) at z~7, and M* = -20.12 (+0.37/-0.48), log phi* = -3.35 (+0.28/-0.47), alpha=-2.02 (+0.22/-0.23) at z~8. These results strengthen suggestions that the evolution at z > 7 is more akin to `density evolution' than the apparent `luminosity evolution' seen at z ~ 5-7. We also provide the first meaningful information on the LF at z ~ 9, explore alternative extrapolations to higher z, and consider the implications for the evolution of UV luminosity density. Finally, we provide catalogues (including z_phot, M_UV and all photometry) for the 100 most robust z~6.5-11.9 galaxies in the HUDF used in this analysis. We discuss our results in the context of earlier work and the results of an independent analysis of the UDF12 data based on colour-colour selection (Schenker et al. 2013).
    Monthly Notices of the Royal Astronomical Society 12/2012; 432(4). · 5.23 Impact Factor

Full-text (2 Sources)

Download
87 Downloads
Available from
May 30, 2014