Article

Transport in Anisotropic Superfluids: A Holographic Description

Journal of High Energy Physics (Impact Factor: 6.22). 09/2011; 2012(1). DOI: 10.1007/JHEP01(2012)059
Source: arXiv

ABSTRACT We study transport phenomena in p-wave superfluids in the context of
gauge/gravity duality. Due to the spacetime anisotropy of this system, the
tensorial structure of the transport coefficients is non-trivial in contrast to
the isotropic case. In particular, there is an additional shear mode which
leads to a non-universal value of the shear viscosity even in an Einstein
gravity setup. In this paper, we present a complete study of the helicity two
and helicity one fluctuation modes. In addition to the non-universal shear
viscosity, we also investigate the thermoelectric effect, i.e. the mixing of
electric and heat current. Moreover, we also find an additional effect due to
the anisotropy, the so-called flexoelectric effect.

0 Followers
 · 
79 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We consider a system consisting of $5$ dimensional gravity with a negative cosmological constant coupled to a massless scalar, the dilaton. We construct a black brane solution which arises when the dilaton satisfies linearly varying boundary conditions in the asymptotically $AdS_5$ region. The geometry of this black brane breaks rotational symmetry while preserving translational invariance and corresponds to an anisotropic phase of the system. Close to extremality, where the anisotropy is big compared to the temperature, some components of the viscosity tensor become parametrically small compared to the entropy density. We study the quasi normal modes in considerable detail and find no instability close to extremality. We also obtain the equations for fluid mechanics for an anisotropic driven system in general, working upto first order in the derivative expansion for the stress tensor, and identify additional transport coefficients which appear in the constitutive relation. For the fluid of interest we find that the parametrically small viscosity can result in a very small force of friction, when the fluid is enclosed between appropriately oriented parallel plates moving with a relative velocity.
    Journal of High Energy Physics 06/2014; 2015(1). DOI:10.1007/JHEP01(2015)005 · 6.22 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We study correlation functions in an equilibrated spatially modulated phase of Einstein-Maxwell two-derivative gravity. We find that the ratio of the appropriate low frequency limit of the stress-stress two point function to the entropy density is modulated. The conductivity, the stress-current and current-stress correlation functions are also modulated. At temperatures close to the phase transition we obtain analytic expressions for some of the correlation functions.
    Journal of High Energy Physics 07/2014; 2014(11). DOI:10.1007/JHEP11(2014)019 · 6.22 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Within gauge/gravity duality, we consider finite density systems in a helical lattice dual to asymptotically anti-de Sitter space-times with Bianchi VII symmetry. These systems can become an anisotropic insulator in one direction while retaining metallic behavior in others. To this model, we add a $U(1)$ charged scalar and show that below a critical temperature, it forms a spatially homogeneous condensate that restores isotropy in a new superconducting ground state. We determine the phase diagram in terms of the helix parameters and perform a stability analysis on its IR fixed point corresponding to a finite density condensed phase at zero temperature. Moreover, by analyzing fluctuations about the gravity background, we study the optical conductivity. Due to the lattice, this model provides an example for a holographic insulator-superfluid transition in which there is no unrealistic delta-function peak in the normal phase DC conductivity. Our results suggest that in the zero temperature limit, all degrees of freedom present in the normal phase condense. This, together with the breaking of translation invariance, has implications for Homes' and Uemuras's relations. This is of relevance for applications to real world condensed matter systems. We find a range of parameters in this system where Homes' relation holds.

Full-text (2 Sources)

Download
58 Downloads
Available from
Jun 1, 2014