Article

(1,0) superconformal models in six dimensions

Journal of High Energy Physics (Impact Factor: 5.62). 08/2011; DOI: 10.1007/JHEP12(2011)062
Source: arXiv

ABSTRACT We construct six-dimensional (1,0) superconformal models with non-abelian
gauge couplings for multiple tensor multiplets. A crucial ingredient in the
construction is the introduction of three-form gauge potentials which
communicate degrees of freedom between the tensor multiplets and the Yang-Mills
multiplet, but do not introduce additional degrees of freedom. Generically
these models provide only equations of motions. For a subclass also a
Lagrangian formulation exists, however it appears to exhibit indefinite metrics
in the kinetic sector. We discuss several examples and analyze the excitation
spectra in their supersymmetric vacua. In general, the models are
perturbatively defined only in the spontaneously broken phase with the vev of
the tensor multiplet scalars serving as the inverse coupling constants of the
Yang-Mills multiplet. We briefly discuss the inclusion of hypermultiplets which
complete the field content to that of superconformal (2,0) theories.

0 Bookmarks
 · 
73 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The demand for small unmanned air vehicles, commonly termed micro air vehicles or MAV's, is rapidly increasing. Driven by applications ranging from civil search-and-rescue missions to military surveillance missions, there is a rising level of interest and investment in better vehicle designs, and miniaturized components are enabling many rapid advances. The need to better understand fundamental aspects of flight for small vehicles has spawned a surge in high quality research in the area of micro air vehicles. These aircraft have a set of constraints which are, in many ways, considerably different from that of traditional aircraft and are often best addressed by a multidisciplinary approach. Fast-response non-linear controls, nano-structures, integrated propulsion and lift mechanisms, highly flexible structures, and low Reynolds aerodynamics are just a few of the important considerations which may be combined in the execution of MAV research. The main objective of this thesis is to derive a consistent nonlinear dynamic model to study the flight dynamics of micro air vehicles with a reasonably accurate representation of aerodynamic forces and moments. The research is divided into two sections. In the first section, derivation of the nonlinear dynamics of flapping wing micro air vehicles is presented. The flapping wing micro air vehicle (MAV) used in this research is modeled as a system of three rigid bodies: a body and two wings. The design is based on an insect called Drosophila Melanogaster, commonly known as fruit-fly. The mass and inertial effects of the wing on the body are neglected for the present work. The nonlinear dynamics is simulated with the aerodynamic data published in the open literature. The flapping frequency is used as the control input. Simulations are run for different cases of wing positions and the chosen parameters are studied for boundedness. Results show a qualitative inconsistency in boundedness for some cases, and demand a better aerodynamic data. The second part of research involves preliminary work required to generate new aerodynamic data for the nonlinear model. First, a computational mesh is created over a 2-D wing section of the MAV model. A finite volume based computational flow solver is used to test different flapping trajectories of the wing section. Finally, a parametric study of the results obtained from the tests is performed.
    01/2012;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present and discuss explicit solutions to the non-abelian self-dual string equation as well as to the non-abelian self-duality equation in six dimensions. These solutions are generalizations of the 't Hooft-Polyakov monopole and the BPST instanton to higher gauge theory. We expect that these solutions are relevant to the effective description of M2- and M5-branes.
    12/2013; 89(6).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Very few AdS_6 x M_4 supersymmetric solutions are known: one in massive IIA, and two IIB solutions dual to it. The IIA solution is known to be unique; in this paper, we use the pure spinor approach to give a classification for IIB supergravity. We reduce the problem to two PDEs on a two-dimensional space Sigma. M_4 is then a fibration of S^2 over Sigma; the metric and fluxes are completely determined in terms of the solution to the PDEs. The results seem likely to accommodate near-horizon limits of (p,q)-fivebrane webs studied in the literature as a source of CFT_5's. We also show that there are no AdS_6 solutions in eleven-dimensional supergravity.
    06/2014;

Full-text (2 Sources)

Download
46 Downloads
Available from
May 16, 2014