Article

The Nature of LINER-like Emission in Red Galaxies

The Astrophysical Journal (Impact Factor: 6.73). 09/2011; DOI: 10.1088/0004-637X/747/1/61
Source: arXiv

ABSTRACT Passive red galaxies frequently contain warm ionized gas and have spectra
similar to low-ionization nuclear emission-line regions (LINERs). Here we
investigate the nature of the ionizing sources powering this emission, by
comparing nuclear spectroscopy from the Palomar survey with larger aperture
data from the Sloan Digital Sky Survey. We find the line emission in the
majority of passive red galaxies is spatially extended; the Halpha surface
brightness profile depends on radius (r) as r^(-1.28). We detect strong line
ratio gradients with radius in [N II]/Ha, [S II]/Ha, and [O III]/[S II],
requiring the ionization parameter to increase outwards. Combined with a
realistic gas density profile, this outward increasing ionization parameter
convincingly rules out AGN as the dominant ionizing source, and strongly favors
distributed ionizing sources. Sources that follow the stellar density profile
can additionally reproduce the observed luminosity-dependence of the line ratio
gradient. Post-AGB stars provide a natural ionization source candidate, though
they have an ionization parameter deficit. Velocity width differences among
different emission lines disfavor shocks as the dominant ionization mechanism,
and suggest that the interstellar medium in these galaxies contains multiple
components. We conclude that the line emission in most LINER-like galaxies
found in large aperture (>100pc) spectroscopy is not primarily powered by AGN
activity and thus does not trace the AGN bolometric luminosity. However, they
can be used to trace warm gas in these red galaxies.

0 Bookmarks
 · 
54 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We use deep integral field spectroscopy data from the CALIFA survey to study the warm interstellar medium (WIM) of 32 nearby early-type galaxies (ETGs). We propose a tentative subdivision of our sample ETGs into two groups, according to their Ha equivalent width (EW) and Lyman continuum (LyC) photon escape fraction (PLF). Type i ETGs show nearly constant EWs and a PLF~0, suggesting that photoionization by post-AGB stars is the main driver of their faint extranuclear nebular emission. Type ii ETGs are characterized by very low, outwardly increasing EWs, and a PLF as large as ~0.9 in their centers. Such properties point to a low, and inwardly decreasing WIM density and/or volume filling factor. We argue that, because of extensive LyC photon leakage, emission-line luminosities and EWs are reduced in type ii ETG nuclei by at least one order of magnitude. Consequently, the line weakness of these ETGs is by itself no compelling evidence for their containing merely "weak" (sub-Eddington accreting) active galactic nuclei (AGN). In fact, LyC photon escape, which has heretofore not been considered, may constitute a key element in understanding why many ETGs with prominent signatures of AGN activity in radio continuum and/or X-ray wavelengths show only faint emission lines and weak signatures of AGN activity in their optical spectra. The LyC photon escape, in conjunction with dilution of nuclear EWs by line-of-sight integration through a triaxial stellar host, can systematically impede detection of AGN in gas-poor galaxy spheroids through optical emission-line spectroscopy. We further find that type i and ii ETGs differ little (~0.4 dex) in their mean BPT line ratios, which in both cases are characteristic of LINERs. This potentially hints at a degeneracy of the projected, luminosity-weighted BPT ratios for the specific 3D properties of the WIM in ETGs. (abridged)
    Astronomy and Astrophysics 06/2013; · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: [Abridged] We present an analysis of optical spectroscopically-identified AGN to M*+1 in a sample of 6 self-similar SDSS galaxy clusters at z=0.07. These clusters are specifically selected to lack significant substructure at bright limits in their central regions so that we are largely able to eliminate the local action of merging clusters on the frequency of AGN. We demonstrate that the AGN fraction increases significantly from the cluster centre to 1.5Rvirial, but tails off at larger radii. If only comparing the cluster core region to regions at ~2Rvirial, no significant variation would be found. We compute the AGN fraction by mass and show that massive galaxies (log(stellar mass)>10.7) are host to a systematically higher fraction of AGN than lower mass galaxies at all radii from the cluster centre. We attribute this deficit of AGN in the cluster centre to the changing mix of galaxy types with radius. We use the WHAN diagnostic to separate weak AGN from `retired' galaxies in which the main ionization mechanism comes from old stellar populations. These retired AGN are found at all radii, while the mass effect is much more pronounced: we find that massive galaxies are more likely to be in the retired class. Further, we show that our AGN have no special position inside galaxy clusters - they are neither preferentially located in the infall regions, nor situated at local maxima of galaxy density. However, we find that the most powerful AGN (with [OIII] equivalent widths <-10Ang) reside at significant velocity offsets in the cluster, and this brings our analysis into agreement with previous work on X-ray selected AGN. Our results suggest that if interactions with other galaxies are responsible for triggering AGN activity, the time-lag between trigger and AGN enhancement must be sufficiently long to obfuscate the encounter site and wipe out the local galaxy density signal.
    Monthly Notices of the Royal Astronomical Society 12/2012; 429(2). · 5.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Many classes of active galactic nuclei (AGNs) have been observed and recorded since the discovery of Seyfert galaxies. In this paper, we examine the sample of luminous galaxies in the Baryon Oscillation Spectroscopic Survey. We find a potentially new observational class of AGNs, one with strong and broad Mg II λ2799 line emission, but very weak emission in other normal indicators of AGN activity, such as the broad-line Hα, Hβ, and the near-ultraviolet AGN continuum, leading to an extreme ratio of broad Hα/Mg II flux relative to normal quasars. Meanwhile, these objects' narrow-line flux ratios reveal AGN narrow-line regions with levels of activity consistent with the Mg II fluxes and in agreement with that of normal quasars. These AGN may represent an extreme case of the Baldwin effect, with very low continuum and high equivalent width relative to typical quasars, but their ratio of broad Mg II to broad Balmer emission remains very unusual. They may also be representative of a class of AGN where the central engine is observed indirectly with scattered light. These galaxies represent a small fraction of the total population of luminous galaxies (sime 0.1%), but are more likely (about 3.5 times) to have AGN-like nuclear line emission properties than other luminous galaxies. Because Mg II is usually inaccessible for the population of nearby galaxies, there may exist a related population of broad-line Mg II emitters in the local universe which is currently classified as narrow-line emitters (Seyfert 2 galaxies) or low ionization nuclear emission-line regions.
    The Astrophysical Journal 02/2014; 781(2):72-. · 6.73 Impact Factor

Full-text

View
2 Downloads
Available from