Discovery of gamma and X-ray pulsations from the young and energetic PSR J1357-6429 with Fermi and XMM-Newton

Astronomy and Astrophysics (Impact Factor: 4.38). 07/2011; 533. DOI: 10.1051/0004-6361/201117413
Source: arXiv


Since the launch of the Fermi satellite, the number of known gamma-ray
pulsars has increased tenfold. Most gamma-ray detected pulsars are young and
energetic, and many are associated with TeV sources. PSR J1357-6429 is a high
spin-down power pulsar (Edot = 3.1 * 10^36 erg/s), discovered during the Parkes
multibeam survey of the Galactic plane, with significant timing noise typical
of very young pulsars. In the very-high-energy domain, H.E.S.S. has reported
the detection of the extended source HESS J1356-645 (intrinsic Gaussian width
of 12') whose centroid lies 7' from PSR J1357-6429. Using a rotational
ephemeris obtained with 74 observations made with the Parkes telescope at 1.4
GHz, we phase-fold more than two years of gamma-ray data acquired by Fermi-LAT
as well as those collected with XMM-Newton, and perform gamma-ray spectral
modeling. Significant gamma and X-ray pulsations are detected from PSR
J1357-6429. The light curve in both bands shows one broad peak. Gamma-ray
spectral analysis of the pulsed emission suggests that it is well described by
a simple power-law of index 1.5 +/- 0.3stat +/- 0.3syst with an exponential
cut-off at 0.8 +/- 0.3stat +/- 0.3syst GeV and an integral photon flux above
100 MeV of (6.5 +/- 1.6stat +/- 2.3syst) * 10^-8 cm^-2 s^-1. The X-ray spectra
obtained from the new data provide results consistent with those reported by
Zavlin (2007). Upper limits on the gamma-ray emission from its potential pulsar
wind nebula (PWN) are also reported. Assuming a distance of 2.4 kpc, the Fermi
LAT energy flux yields a gamma-ray luminosity for PSR J1357-6429 of L_gamma =
(2.13 +/- 0.25stat +/- 0.83syst) * 10^34 erg/s, consistent with an L_gamma
\propto sqrt(Edot) relationship. The Fermi non-detection of the pulsar wind
nebula associated with HESS J1356-645 provides new constraints on the electron
population responsible for the extended TeV emission.

Download full-text


Available from: M. Renaud, Oct 03, 2015
19 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Optical observations of pulsars are crucial to study the neutron star properties, from the structure and composition of the interior, to the properties and geometry of the magnetosphere. Historically, X and gamma-ray observations have paved the way to the pulsar optical identifications. The launch of Fermi opened new perspectives in the optical-to-gamma-ray studies of neutron stars, with the detection of more than 80 pulsars. Here, we aim to search for optical emission from two Fermi pulsars which are interesting targets on the basis of their spin-down age, energetics, and distance: PSR J1357-6429and PSR J1048-5832. The two pulsars and their pulsar wind nebulae (PWNe) are also detected in X-rays by Chandra and XMM. No deep optical observations of these two pulsars have been reported so far. We used multi-band optical images (V,R,I) taken with the VLT and available in the European Southern Observatory (ESO) archive to search for, or put tight constraints to, their optical emission. We re-assessed the positions of the two pulsars from the analyses of all the available Chandra observations and the comparison with the published radio coordinates. For PSR J1357-6429, this yielded a tentative proper motion mu=0.17+/-0.055 "/yr (70+/-15 deg position angle). We did not detect candidate counterparts to PSR J1357-6429 and PSR J1048-5832 down to V~27 and ~27.6, respectively, although for the former we found a possible evidence for a faint, unresolved object at the Chandra position. Our limits imply an efficiency in converting spin-down power into optical luminosity <7x10^{-7} and <6x10^{-6}, respectively, possibly close to that of the Vela pulsar.
    Astronomy and Astrophysics 07/2011; 533. DOI:10.1051/0004-6361/201117318 · 4.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Several newly discovered very-high-energy (VHE; E > 100 GeV) gamma-ray sources in the Galaxy are thought to be associated with energetic pulsars. Among them, middle-aged (> 1E+4 yr) systems exhibit large centre-filled VHE nebulae, offset from the pulsar position, which result from the complex relationship between the pulsar wind and the surrounding medium, and reflect the past evolution of the pulsar. Imaging Atmospheric Cherenkov Telescopes (IACTs) have been successful in revealing extended emission from these sources in the VHE regime. Together with radio and X-ray observations, this observational window allows one to probe the energetics and magnetic field inside these large-scale nebulae. H.E.S.S., with its large field of view, angular resolution of < 0.1deg and unprecedented sensitivity, has been used to discover a large population of such VHE sources. In this paper, the H.E.S.S. data from the continuation of the Galactic Plane Survey (-80deg < l < 60deg, |b| < 3deg), together with the existing multi-wavelength observations, are used. A new VHE gamma-ray source was discovered at R.A. (J2000) = 13h56m00s, Dec. (J2000) = -64d30m00s with a 2' statistical error in each coordinate, namely HESS J1356-645. The source is extended, with an intrinsic Gaussian width of (0.20 +/- 0.02)deg. Its integrated energy flux between 1 and 10 TeV of 8E-12 erg cm-2 s-1 represents ~ 11% of the Crab Nebula flux in the same energy band. The energy spectrum between 1 and 20 TeV is well described by a power law dN/dE ~ E-Gamma with photon index Gamma = 2.2 +/- 0.2stat +/- 0.2sys. The inspection of archival radio images at three frequencies and the analysis of X-ray data from ROSAT/PSPC and XMM-Newton/MOS reveal the presence of faint non-thermal diffuse emission coincident with HESS J1356-645. HESS J1356-645 is most likely associated with the young and energetic pulsar PSR J1357-6429 (Abridged)
    Astronomy and Astrophysics 09/2011; 533:103. DOI:10.1051/0004-6361/201117445 · 4.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: (Abridged) PSR J1357-6429 is a Vela-like radio pulsar that has been recently detected in X-rays and gamma-rays. It powers a compact tail-like X-ray pulsar wind nebula and X-ray-radio plerion associated with an extended TeV source HESS J1356-645. We present our deep optical observations with the Very Large Telescope to search for an optical counterpart of the pulsar and its nebula. We detect a point-like source in V, R, and I bands whose position is within the 1-sigma error circle of the X-ray position of the pulsar, and whose colours are distinct from those of ordinary stars. We consider it as a candidate optical counterpart of the pulsar. If it is indeed the counterpart, its 5-sigma offset from the radio pulsar position, measured about 9 yr earlier, implies that the transverse velocity of the pulsar is in the range of 1600--2000 km s^{-1} at the distance of 2--2.5 kpc, making it the fastest moving pulsar known. The direction of the estimated proper motion coincides with the extension of the pulsar's X-ray tail, suggesting that this is a jet. The tentative optical luminosity and efficiency of the pulsar are similar to those of the Vela pulsar, which also supports the optical identification. However, the candidate undergoes an unusually steep dereddened flux increase towards the infrared with a spectral index of about 5, that is not typical of optical pulsars. It implies a strong double-knee spectral break in the pulsar emission between the optical and X-rays. The reasons for the spectral steepness are unclear. It may be caused by a nebula knot projected onto the jet and strongly overlapping with the pulsar, as observed for the Crab, where the knot has a significantly steeper spectrum than the pulsar. We find no other signs of the pulsar nebula in the optical. Alternatively, the detected source may be a faint AGN, that has not yet been seen at other wavelengths.
    Astronomy and Astrophysics 02/2012; 540:A28. DOI:10.1051/0004-6361/201118591 · 4.38 Impact Factor
Show more