Discovery of gamma and X-ray pulsations from the young and energetic PSR J1357-6429 with Fermi and XMM-Newton

Astronomy and Astrophysics (Impact Factor: 4.48). 07/2011; 533. DOI: 10.1051/0004-6361/201117413
Source: arXiv

ABSTRACT Since the launch of the Fermi satellite, the number of known gamma-ray
pulsars has increased tenfold. Most gamma-ray detected pulsars are young and
energetic, and many are associated with TeV sources. PSR J1357-6429 is a high
spin-down power pulsar (Edot = 3.1 * 10^36 erg/s), discovered during the Parkes
multibeam survey of the Galactic plane, with significant timing noise typical
of very young pulsars. In the very-high-energy domain, H.E.S.S. has reported
the detection of the extended source HESS J1356-645 (intrinsic Gaussian width
of 12') whose centroid lies 7' from PSR J1357-6429. Using a rotational
ephemeris obtained with 74 observations made with the Parkes telescope at 1.4
GHz, we phase-fold more than two years of gamma-ray data acquired by Fermi-LAT
as well as those collected with XMM-Newton, and perform gamma-ray spectral
modeling. Significant gamma and X-ray pulsations are detected from PSR
J1357-6429. The light curve in both bands shows one broad peak. Gamma-ray
spectral analysis of the pulsed emission suggests that it is well described by
a simple power-law of index 1.5 +/- 0.3stat +/- 0.3syst with an exponential
cut-off at 0.8 +/- 0.3stat +/- 0.3syst GeV and an integral photon flux above
100 MeV of (6.5 +/- 1.6stat +/- 2.3syst) * 10^-8 cm^-2 s^-1. The X-ray spectra
obtained from the new data provide results consistent with those reported by
Zavlin (2007). Upper limits on the gamma-ray emission from its potential pulsar
wind nebula (PWN) are also reported. Assuming a distance of 2.4 kpc, the Fermi
LAT energy flux yields a gamma-ray luminosity for PSR J1357-6429 of L_gamma =
(2.13 +/- 0.25stat +/- 0.83syst) * 10^34 erg/s, consistent with an L_gamma
\propto sqrt(Edot) relationship. The Fermi non-detection of the pulsar wind
nebula associated with HESS J1356-645 provides new constraints on the electron
population responsible for the extended TeV emission.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the second catalog of high-energy γ-ray sources detected by the Large Area Telescope (LAT), the primary science instrument on the Fermi Gamma-ray Space Telescope (Fermi), derived from data taken during the first 24 months of the science phase of the mission, which began on 2008 August 4. Source detection is based on the average flux over the 24 month period. The second Fermi-LAT catalog (2FGL) includes source location regions, defined in terms of elliptical fits to the 95% confidence regions and spectral fits in terms of power-law, exponentially cutoff power-law, or log-normal forms. Also included are flux measurements in five energy bands and light curves on monthly intervals for each source. Twelve sources in the catalog are modeled as spatially extended. We provide a detailed comparison of the results from this catalog with those from the first Fermi-LAT catalog (1FGL). Although the diffuse Galactic and isotropic models used in the 2FGL analysis are improved compared to the 1FGL catalog, we attach caution flags to 162 of the sources to indicate possible confusion with residual imperfections in the diffuse model. The 2FGL catalog contains 1873 sources detected and characterized in the 100 MeV to 100 GeV range of which we consider 127 as being firmly identified and 1171 as being reliably associated with counterparts of known or likely γ-ray-producing source classes.
    The Astrophysical Journal Supplement Series 03/2012; 199(2):31. · 14.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Several newly discovered very-high-energy (VHE; E > 100 GeV) gamma-ray sources in the Galaxy are thought to be associated with energetic pulsars. Among them, middle-aged (> 1E+4 yr) systems exhibit large centre-filled VHE nebulae, offset from the pulsar position, which result from the complex relationship between the pulsar wind and the surrounding medium, and reflect the past evolution of the pulsar. Imaging Atmospheric Cherenkov Telescopes (IACTs) have been successful in revealing extended emission from these sources in the VHE regime. Together with radio and X-ray observations, this observational window allows one to probe the energetics and magnetic field inside these large-scale nebulae. H.E.S.S., with its large field of view, angular resolution of < 0.1deg and unprecedented sensitivity, has been used to discover a large population of such VHE sources. In this paper, the H.E.S.S. data from the continuation of the Galactic Plane Survey (-80deg < l < 60deg, |b| < 3deg), together with the existing multi-wavelength observations, are used. A new VHE gamma-ray source was discovered at R.A. (J2000) = 13h56m00s, Dec. (J2000) = -64d30m00s with a 2' statistical error in each coordinate, namely HESS J1356-645. The source is extended, with an intrinsic Gaussian width of (0.20 +/- 0.02)deg. Its integrated energy flux between 1 and 10 TeV of 8E-12 erg cm-2 s-1 represents ~ 11% of the Crab Nebula flux in the same energy band. The energy spectrum between 1 and 20 TeV is well described by a power law dN/dE ~ E-Gamma with photon index Gamma = 2.2 +/- 0.2stat +/- 0.2sys. The inspection of archival radio images at three frequencies and the analysis of X-ray data from ROSAT/PSPC and XMM-Newton/MOS reveal the presence of faint non-thermal diffuse emission coincident with HESS J1356-645. HESS J1356-645 is most likely associated with the young and energetic pulsar PSR J1357-6429 (Abridged)
    Astronomy and Astrophysics 09/2011; 533:103. · 4.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: New generational very-high-energy telescope arrays have been detecting more than 120 TeV {\gamma}-ray sources. Multi-wavelength observations on these Gamma-ray sources have proven to be robust in shedding light on their nature. The coming radio telescope arrays like ASKAP and FAST may find more faint (extended) radio sources due to their better sensitivities and resolutions, might identify more previously un-identified {\gamma}-ray sources and set many new targets for future deep surveys by very-high-energy ground-based telescopes like LHAASO. We in the paper summarize a list of known Galactic {\gamma}-ray Supernova Remnants (SNRs) with or without radio emissions so far, which includes some SNRs deserving top priority for future multi-wavelength observations.
    Science China: Physics, Mechanics and Astronomy 01/2013; 56(8). · 0.86 Impact Factor

Full-text (2 Sources)

Available from
Jun 3, 2014