Current treatment strategy of acute promyelocytic leukemia.

Department of Hematology, Shanghai Institute of Hematology, Rui-Jin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China.
Frontiers of medicine 12/2011; 5(4):341-7. DOI: 10.1007/s11684-011-0169-z
Source: PubMed

ABSTRACT Acute promyelocytic leukemia (APL) is a unique subtype of acute myeloid leukemia (AML). The prognosis of APL has changed from the worst among the AMLs to currently the best. The application of all-trans retinoic acid (ATRA) in the induction therapy of APL decreases the high mortality of newly diagnosed patients, thereby significantly improving the response rate. ATRA combined with anthracycline-based chemotherapy is the current standard treatment, and for high-risk patients, high doses cytarabine have a beneficial effect on relapse prevention. In recent years, the indications of arsenic trioxide (ATO) therapy for APL have been extended from the salvage therapy for relapse patients to the first-line treatment of de novo APL. The introduction of both ATRA and ATO represents great achievements in translational medicine. In this review article, we discuss the therapeutic strategies for this disease, including the initial approaches to newly diagnosed patients, prevention, and treatment of side effects and relapse to ensure the best and timely treatment for each newly diagnosed APL patient.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The unfolded protein response (UPR) is an essential pathway for both normal and malignant plasma cells to maintain endoplasmic reticulum (ER) homeostasis in response to the large amount of immunoglobulin (Ig) output. The inositol-requiring enzyme 1-X-box binding protein-1 (IRE1-XBP-1) arm of the UPR pathway has been shown to play crucial roles not only in relieving the ER stress by up-regulating a series of genes favoring ER-associated protein degradation and protein folding, but in mediating terminal plasmacytic differentiation and maturation. Myeloma cells comprise various subsets arrested in diverse differentiated phases, and the immaturity of myeloma cells has been taken as a marker for poor prognosis, suggesting that differentiation induction would be a promising therapeutic strategy for myeloma. Herein, we used low-dose pharmacological UPR inducers such as tunicamycin (TM) and dithiothreitol (DTT) to efficiently activate the IRE1-XBP-1 pathway in myeloma cells characterized by transcriptional expression increase in spliced XBP-1 and molecular chaperons, accompanied by significant differentiation and maturation of these myeloma cells, without concomitant cytotoxicity. These differentiated myeloma cells exhibited a more mature appearance with well-developed cytoplasm and a reduced nucleocytoplasmic ratio, and a further differentiated phenotype with markedly increased expression of CD49e together with significantly elevated cellular secretion of Ig light chain as shown by flow cytometry and ELISA, in contrast to the control myeloma cells without exposed to TM or DTT. Moreover, siRNA knockdown of XBP-1 disrupted TM- or DTT-induced myeloma cell differentiation and maturation. Our study, for the first time, validated that the modest activation of the UPR pathway enables myeloma cells to further differentiate, and identified that XBP-1 plays an indispensable role in UPR-mediated myeloma cell differentiation and maturation. Thus, we provided the rationale and feasibility for the exploration of the novel therapeutic strategy of differentiation induction for plasmacytic malignancies.
    Clinical and Experimental Medicine 12/2013; · 2.40 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Arsenic is a well-known human carcinogen, which potentially affects ~160 million people worldwide via exposure to unsafe levels in drinking water. Lungs are one of the main target organs for arsenic-related carcinogenesis. These tumors exhibit particular features, such as squamous cell-type specificity and high incidence among never smokers. Arsenic-induced malignant transformation is mainly related to the biotransformation process intended for the metabolic clearing of the carcinogen, which results in specific genetic and epigenetic alterations that ultimately affect key pathways in lung carcinogenesis. Based on this, lung tumors induced by arsenic exposure could be considered an additional subtype of lung cancer, especially in the case of never-smokers, where arsenic is a known etiological agent. In this article, we review the current knowledge on the various mechanisms of arsenic carcinogenicity and the specific roles of this metalloid in signaling pathways leading to lung cancer.
    Molecular Cancer 03/2013; 12(1):20. · 5.13 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Acute promyelocytic leukemia (APL) is an aggressive disease requiring prompt diagnosis and treatment. Rapid detection of the PML-RARA fusion gene provides the molecular basis for highly effective therapy with all-trans retinoic acid. We developed a rapid assay by novel droplet-reverse transcriptase-polymerase chain reaction (droplet-RT-PCR) for the detection of the PML-RARA fusion gene in APL patients. METHODS: RNA was extracted from 7 samples obtained from 5 APL patients with the PML-RARA fusion gene confirmed by nested RT-PCR and fluorescence in situ hybridization. Using these 7 samples, we evaluated the reaction time and amplification efficiency of the droplet-RT-PCR. RESULTS: Using droplet-RT-PCR, we could detect the PML-RARA fusion gene in all 7 samples. The reaction time for 50cycles of droplet-RT-PCR was 27min. The amplification by the droplet-RT-PCR assay was considered positive for the PML-RARA fusion gene in less than 22min, at the point when the fluorescence exceeded the threshold level. CONCLUSIONS: Our novel droplet-RT-PCR assay is specific for the detection of the PML-RARA fusion gene and has a markedly reduced reaction time. Thus, the novel droplet-RT-PCR assay contributes to the rapid diagnosis of APL without lagging behind the morphological assessment.
    Clinica chimica acta; international journal of clinical chemistry 11/2012; · 2.54 Impact Factor