Examination of mesenchymal stem cell-mediated RNAi transfer to Huntington's disease affected neuronal cells for reduction of huntingtin.

Institute for Regenerative Cures, University of California Davis Health System, 2921 Stockton Blvd Room #1300, Sacramento, CA 95817, USA.
Molecular and Cellular Neuroscience (Impact Factor: 3.84). 12/2011; 49(3):271-81. DOI: 10.1016/j.mcn.2011.12.001
Source: PubMed

ABSTRACT Huntington's disease (HD) is a fatal, autosomal dominant neurodegenerative disorder caused by an expanded trinucleotide (CAG) repeat in exon 1 of the huntingtin gene (Htt). This expansion creates a toxic polyglutamine tract in the huntingtin protein (HTT). Currently, there is no treatment for either the progression or prevention of the disease. RNA interference (RNAi) technology has shown promise in transgenic mouse models of HD by reducing expression of mutant HTT and slowing disease progression. The advancement of RNAi therapies to human clinical trials is hampered by problems delivering RNAi to affected neurons in a robust and sustainable manner. Mesenchymal stem cells (MSC) have demonstrated a strong safety profile in both completed and numerous ongoing clinical trials. MSC exhibit a number of innate therapeutic effects, such as immune system modulation, homing to injury, and cytokine release into damaged microenvironments. The ability of MSC to transfer larger molecules and even organelles suggested their potential usefulness as delivery vehicles for therapeutic RNA inhibition. In a series of model systems we have found evidence that MSC can transfer RNAi targeting both reporter genes and mutant huntingtin in neural cell lines. MSC expressing shRNA antisense to GFP were found to decrease expression of GFP in SH-SY5Y cells after co-culture when assayed by flow cytometry. Additionally MSC expressing shRNA antisense to HTT were able to decrease levels of mutant HTT expressed in both U87 and SH-SY5Y target cells when assayed by Western blot and densitometry. These results are encouraging for expanding the therapeutic abilities of both RNAi and MSC for future treatments of Huntington's disease.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Bone marrow mesenchymal stem cells (BMSCs) have been shown to be a promising cell type for the study of neuronal differentiation; however, few attempts had been made to differentiate these cells into inhibitory gamma-aminobutyric acid (GABA)ergic neurons. In this study, we over-expressed mammalian achaete-scute homologue-1 (Mash1), a basic helix-loop-helix (bHLH) transcription factor, in Sprague-Dawley rat BMSCs via lentiviral vectors, and then induced neuronal differentiation of these cells using conditioned medium. Our western blot results show that, under conditions of differentiation, Mash1-overexpressing BMSCs exhibit an increased expression of neuronal markers and a greater degree of neuronal morphology compared to control, non-Mash1-overexpressing cells. Using immunocytochemistry, we observed increased expression of glutamic acid decarboxylase 67 (GAD67), as well as neuron-specific nuclear protein (NeuN) and β3-tubulin, in Mash1-overexpressing BMSCs compared to control cells. Moreover, we also found the differentiated cells showed representative traces of action potentials in electrophysiological characterization. In conclusion, our study demonstrated that over-expression of Mash1 can improve GABAergic differentiation of BMSCs in vitro.
    Brain research bulletin 10/2013; · 2.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The transplantation of mesenchymal stem cells (MSCs) for treating neurodegenerative disorders has received growing attention recently because these cells are readily available, easily expanded in culture, and when transplanted, survive for relatively long periods of time. Given that such transplants have been shown to be safe in a variety of applications, in addition to recent findings that MSCs have useful immunomodulatory and chemotactic properties, the use of these cells as vehicles for delivering or producing beneficial proteins for therapeutic purposes has been the focus of several labs. In our lab, the use of genetic modified MSCs to release neurotrophic factors for the treatment of neurodegenerative diseases is of particular interest. Specifically, glial cell-derived neurotrophic factor (GDNF), nerve growth factor (NGF), and brain derived neurotrophic factor (BDNF) have been recognized as therapeutic trophic factors for Parkinson's, Alzheimer's and Huntington's diseases, respectively. The aim of this literature review is to provide insights into: (1) the inherent properties of MSCs as a platform for neurotrophic factor delivery; (2) the molecular tools available for genetic manipulation of MSCs; (3) the rationale for utilizing various neurotrophic factors for particular neurodegenerative diseases; and (4) the clinical challenges of utilizing genetically modified MSCs.
    International Journal of Molecular Sciences 01/2014; 15(2):1719-45. · 2.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Transplantation of stem cells for the treatment of Huntington’s disease (HD) garnered much attention prior to the turn of the century. Several studies using mesenchymal stem cells (MSCs) have indicated that these cells have enormous therapeutic potential in HD and other disorders. Advantages of using MSCs for cell therapies include their ease of isolation, rapid propagation in culture, and favorable immunomodulatory profiles. However, the lack of consistent neuronal differentiation of transplanted MSCs has limited their therapeutic efficacy to slowing the progression of HD-like symptoms in animal models of HD. The use of MSCs which have been genetically altered to overexpress brain derived neurotrophic factor to enhance support of surviving cells in a rodent model of HD provides proof-of-principle that these cells may provide such prophylactic benefits. New techniques that may prove useful for cell replacement therapies in HD include the use of genetically altering fate-restricted cells to produce induced pluripotent stem cells (iPSCs). These iPSCs appear to have certain advantages over the use of embryonic stem cells, including being readily available, easy to obtain, less evidence of tumor formation, and a reduced immune response following their transplantation. Recently, transplants of iPSCs have shown to differentiate into region-specific neurons in an animal model of HD. The overall successes of using genetically altered stem cells for reducing neuropathological and behavioral deficits in rodent models of HD suggest that these approaches have considerable potential for clinical use. However, the choice of what type of genetically altered stem cell to use for transplantation is dependent on the stage of HD and whether the end-goal is preserving endogenous neurons in early-stage HD, or replacing the lost neurons in late-stage HD. This review will discuss the current state of stem cell technology for treating the different stages of HD and possible future directions for stem-cell therapy in HD.
    Brain Sciences. 01/2014; 4(1):202-219.

Full-text (2 Sources)

Available from
May 30, 2014