A high-throughput fluorescence polarization anisotropy assay for the 70N domain of replication protein A.

Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
Analytical Biochemistry (Impact Factor: 2.31). 12/2011; 421(2):742-9. DOI: 10.1016/j.ab.2011.11.025
Source: PubMed

ABSTRACT Replication protein A (RPA) interacts with multiple checkpoint proteins and promotes signaling through the ATR kinase, a key regulator of checkpoint pathways in the mammalian response to DNA damage. In cancer cells, increased DNA repair activity contributes to resistance to chemotherapy. Therefore, small molecules that block binding of checkpoint proteins to RPA may inhibit the DNA damage response and, thus, sensitize cancer cells to DNA-damaging agents. Here we report on the development of a homogeneous, high-throughput fluorescence polarization assay for identifying compounds that block the critical protein-protein interaction site in the basic cleft of the 70N domain of RPA (RPA70N). A fluorescein isothiocyanate (FITC)-labeled peptide derived from the ATR cofactor, ATRIP, was used as a probe in the binding assay. The ability of the assay to accurately detect relevant ligands was confirmed using peptides derived from ATRIP, RAD9, MRE11, and p53. The assay was validated for use in high-throughput screening using the Spectrum collection of 2000 compounds. The FPA assay was performed with a Z' factor of ≥ 0.76 in a 384-well format and identified several compounds capable of inhibiting the RPA70N binding interface.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Three synthetic peptide sequences of 18 amino acid each, corresponding to different fragments of the E2 capsid protein of GB virus C (GBV-C): SDRDTVVELSEWGVPCAT (P45), GSVRFPFHRCGAGPKLTK (P58) and RFPFHRCGAGPKLTKDLE (P59) have been characterized in order to find a relationship between their physicochemical properties and the results obtained in cellular models. Experiments were performed in presence and absence of the HIV fusion peptide (FP-HIV) due to the evidences that GBV-C inhibits AIDS progression. P45 peptide showed lower surface activity and less extent of penetration into 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-dimyristoyl-sn-glycero-3-phospho-L-serine (DMPS) (3:2, mol/mol) lipid monolayers than P58 and P59. However, P45 peptide presented higher capacity to inhibit FP-HIV induced cell-cell fusion than the other two sequences. These results were supported by fluorescence anisotropy measurements which indicated that P45 had a significant effect on the inhibition of FP-HIV perturbation of liposomes of the same lipid composition. Finally, atomic force microscopy (AFM) studies have evidenced the modification of the changes induced by the FP-HIV in the morphology of lipid bilayers when P45 was present in the medium.
    Biochimica et Biophysica Acta 02/2014; · 4.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The selection of natural and chemical compounds for potential applications in new pharmaceutical formulations constitutes a time-consuming procedure in drug screening. To overcome this issue, new devices called biosensors, have already demonstrated their versatility and capacity for routine clinical diagnosis. Designed to perform analytical analysis for the detection of a particular analyte, biosensors based on the coupling of proteins to amperometric and optical devices have shown the appropriate selectivity, sensibility and accuracy. During the last years, the exponential demand for pharmacokinetic studies in the early phases of drug development, along with the need of lower molecular weight detection, have led to new biosensor structure materials with innovative immobilization strategies. The result has been the development of smaller, more reproducible biosensors with lower detection limits, and with a drastic reduction in the required sample volumes. Therefore in order to describe the main achievements in biosensor fields, the present review has the main aim of summarizing the essential strategies used to generate these specific devices, that can provide, under physiological conditions, a credible molecule profile and assess specific pharmacokinetic parameters.
    Molecules 08/2014; 19(8):12461-12485. · 2.10 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The ATR/Chk1 pathway is a critical surveillance network that maintains genomic integrity during DNA replication by stabilizing the replication forks during normal replication to avoid replication stress. One of the many differences between normal cells and cancer cells is the amount of replication stress that occurs during replication. Cancer cells with activated oncogenes generate increased levels of replication stress. This creates an increased dependency on the ATR/Chk1 pathway in cancer cells and opens up an opportunity to preferentially kill cancer cells by inhibiting this pathway. In support of this idea, we have identified a small molecule termed HAMNO ((1Z)-1-[(2-hydroxyanilino)methylidene]naphthalen-2-one), a novel protein interaction inhibitor of replication protein A (RPA), a protein involved in the ATR/Chk1 pathway. HAMNO selectively binds the N-terminal domain of RPA70, effectively inhibiting critical RPA protein interactions which rely on this domain. HAMNO inhibits both ATR autophosphorylation and phosphorylation of RPA32 Ser33 by ATR. By itself, HAMNO treatment creates DNA replication stress in cancer cells that are already experiencing replication stress, but not in normal cells, and it acts synergistically with etoposide to kill cancer cells in vitro and slow tumor growth in vivo. Thus, HAMNO illustrates how RPA inhibitors represent candidate therapeutics for cancer treatment, providing disease selectivity in cancer cells by targeting their differential response to replication stress.
    Cancer Research 07/2014; · 9.28 Impact Factor

Full-text (2 Sources)

Available from
Jun 10, 2014