Article

Emergence of patterned activity in the developing zebrafish spinal cord.

Helen Wills Neuroscience Graduate Program, University of California, Berkeley, Berkeley, CA 94720, USA.
Current biology: CB (Impact Factor: 9.92). 12/2011; 22(2):93-102. DOI: 10.1016/j.cub.2011.12.002
Source: PubMed

ABSTRACT Developing neural networks display spontaneous and correlated rhythmic bursts of action potentials that are essential for circuit refinement. In the spinal cord, it is poorly understood how correlated activity is acquired and how its emergence relates to the formation of the spinal central pattern generator (CPG), the circuit that mediates rhythmic behaviors like walking and swimming. It is also unknown whether early, uncorrelated activity is necessary for the formation of the coordinated CPG.
Time-lapse imaging in the intact zebrafish embryo with the genetically encoded calcium indicator GCaMP3 revealed a rapid transition from slow, sporadic activity to fast, ipsilaterally correlated, and contralaterally anticorrelated activity, characteristic of the spinal CPG. Ipsilateral correlations were acquired through the coalescence of local microcircuits. Brief optical manipulation of activity with the light-driven pump halorhodopsin revealed that the transition to correlated activity was associated with a strengthening of ipsilateral connections, likely mediated by gap junctions. Contralateral antagonism increased in strength at the same time. The transition to coordinated activity was disrupted by long-term optical inhibition of sporadic activity in motoneurons and ventral longitudinal descending interneurons and resulted in more neurons exhibiting uncoordinated activity patterns at later time points.
These findings show that the CPG in the zebrafish spinal cord emerges directly from a sporadically active network as functional connectivity strengthens between local and then more distal neurons. These results also reveal that early, sporadic activity in a subset of ventral spinal neurons is required for the integration of maturing neurons into the coordinated CPG network.

0 Followers
 · 
175 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nonvisual detection of light by the vertebrate hypothalamus, pineal, and retina is known to govern seasonal and circadian behaviors [1]. However, the expression of opsins in multiple other brain structures [2-4] suggests a more expansive repertoire for light regulation of physiology, behavior, and development. Translucent zebrafish embryos express extraretinal opsins early on [5, 6], at a time when spontaneous activity in the developing CNS plays a role in neuronal maturation and circuit formation [7]. Though the presence of extraretinal opsins is well documented, the function of direct photoreception by the CNS remains largely unknown. Here, we show that early activity in the zebrafish spinal central pattern generator (CPG) and the earliest locomotory behavior are dramatically inhibited by physiological levels of environmental light. We find that the photosensitivity of this circuit is conferred by vertebrate ancient long opsin A (VALopA), which we show to be a Gαi-coupled receptor that is expressed in the neurons of the spinal network. Sustained photoactivation of VALopA not only suppresses spontaneous activity but also alters the maturation of time-locked correlated network patterns. These results uncover a novel role for nonvisual opsins and a mechanism for environmental regulation of spontaneous motor behavior and neural activity in a circuit previously thought to be governed only by intrinsic developmental programs. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Current Biology 12/2014; 25(1). DOI:10.1016/j.cub.2014.10.055 · 9.92 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Larval zebrafish offer the potential for large-scale optical imaging of neural activity throughout the central nervous system; however, several barriers challenge their utility. First, ~panneuronal probe expression has to date only been demonstrated at early larval stages up to 7 days post-fertilization (dpf), precluding imaging at later time points when circuits are more mature. Second, nuclear exclusion of genetically-encoded calcium indicators (GECIs) limits the resolution of functional fluorescence signals collected during imaging. Here, we report the creation of transgenic zebrafish strains exhibiting robust, nuclearly targeted expression of GCaMP3 across the brain up to at least 14 dpf utilizing a previously described optimized Gal4-UAS system. We confirmed both nuclear targeting and functionality of the modified probe in vitro and measured its kinetics in response to action potentials (APs). We then demonstrated in vivo functionality of nuclear-localized GCaMP3 in transgenic zebrafish strains by identifying eye position-sensitive fluorescence fluctuations in caudal hindbrain neurons during spontaneous eye movements. Our methodological approach will facilitate studies of larval zebrafish circuitry by both improving resolution of functional Ca(2+) signals and by allowing brain-wide expression of improved GECIs, or potentially any probe, further into development.
    Frontiers in Neural Circuits 11/2014; 8:138. DOI:10.3389/fncir.2014.00138 · 2.95 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The developing brain is extremely sensitive to many chemicals. Exposure to neurotoxicants during development has been implicated in various neuropsychiatric and neurological disorders, including autism spectrum disorder, attention deficit hyperactive disorder, schizophrenia, Parkinson's disease, and Alzheimer's disease. Although rodents have been widely used for developmental neurotoxicity testing, experiments using large numbers of rodents are time-consuming, expensive, and raise ethical concerns. Using alternative non-mammalian animal models may relieve some of these pressures by allowing testing of large numbers of subjects while reducing expenses and minimizing the use of mammalian subjects. In this review, we discuss some of the advantages of using zebrafish in developmental neurotoxicity testing, focusing on central nervous system development, neurobehavior, toxicokinetics, and toxicodynamics in this species. We also describe some important examples of developmental neurotoxicity testing using zebrafish combined with gene expression profiling, neuroimaging, or neurobehavioral assessment. Zebrafish may be a systems toxicology model that has the potential to reveal the pathways of developmental neurotoxicity and to provide a sound basis for human risk assessments.
    Congenital Anomalies 08/2014; 55(1). DOI:10.1111/cga.12079 · 0.78 Impact Factor

Full-text (2 Sources)

Download
51 Downloads
Available from
May 26, 2014