The stress-induced cytokine interleukin-6 decreases the inhibition/excitation ratio in the rat temporal cortex via trans-signaling.

School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, 75080, USA.
Biological psychiatry (Impact Factor: 8.93). 04/2012; 71(7):574-82. DOI: 10.1016/j.biopsych.2011.11.018
Source: PubMed

ABSTRACT Although it is known that stress elevates the levels of pro-inflammatory cytokines and promotes hyper-excitable central conditions, a causal relationship between these two factors has not yet been identified. Recent studies suggest that increases in interleukin 6 (IL-6) levels are specifically associated with stress. We hypothesized that IL-6 acutely and directly induces cortical hyper-excitability by altering the balance between synaptic excitation and inhibition.
We used patch-clamp to determine the effects of exogenous or endogenous IL-6 on electrically evoked postsynaptic currents on a cortical rat slice preparation. We used control subjects or animals systemically injected with lipopolysaccharide or subjected to electrical foot-shock as rat models of stress.
In control animals, IL-6 did not affect excitatory postsynaptic currents but selectively and reversibly reduced the amplitude of inhibitory postsynaptic currents with a postsynaptic effect. The IL-6-induced inhibitory postsynaptic currents decrease was inhibited by drugs interfering with receptor trafficking and/or internalization, including wortmannin, Brefeldin A, 2-Br-hexadecanoic acid, or dynamin peptide inhibitor. In both animal models, stress-induced decrease in synaptic inhibition/excitation ratio was prevented by prior intra-ventricular injection of an analog of the endogenous IL-6 trans-signaling blocker gp130.
Our results suggest that stress-induced IL-6 shifts the balance between synaptic inhibition and excitation in favor of the latter, possibly by decreasing the density of functional γ-aminobutyric acid A receptors, accelerating their removal and/or decreasing their insertion rate from/to the plasma membrane. We speculate that this mechanism could contribute to stress-induced detrimental long-term increases in central excitability present in a variety of neurological and psychiatric conditions.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Abnormal basal activity and stress-evoked reactivity of the hypothalamic-pituitary-adrenal (HPA) axis are often seen in depression, implicating HPA axis dysfunction as a potentially causative or exacerbating factor. Chronic stress is also a factor in depression, but it is not known what may underlie the shift from adaptive to maladaptive HPA activity over the course of chronic stress. Interleukin 6 (IL-6), a stress-inducible cytokine that signals through gp130 and IL-6Rα receptors to activate the JAK/STAT3 signaling cascade, is elevated in some subtypes of depression, and may have a modulatory effect on HPA activation, raising the possibility that IL-6 contributes to depression through effects on the HPA axis. In this study, we examined the effects of three different stress modalities, acute footshock, chronic intermittent cold (CIC) stress and chronic unpredictable stress (CUS) on IL-6 signaling in the hypothalamus. We also investigated whether IL-6 modulates the HPA response to chronic stress, by blocking IL-6 signaling in the brain during CIC stress using either a neutralizing antibody or an inhibitor of STAT3 phosphorylation. We show that IL-6 and STAT3 in the hypothalamus are activated in response to footshock and CUS. We also found that basal IL-6 signaling through the JAK/STAT3 pathway is required for the sustained CORT response to chronic, but not acute, cold stress and therefore is a potential determinant of plasticity in the HPA axis specifically during chronic stress exposure.
    Psychoneuroendocrinology 12/2012; · 5.59 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Central and sympathetic nervous systems govern functional activities of many organs. Solid tumors like organs are also innervated by sympathetic nerve fibers. Neurotransmitters released from sympathetic nerve fibers can modulate biological behaviors of tumor cells. Multiple physiologic processes of tumor development may be dominated by central and sympathetic nervous systems as well. Recent studies suggest that dysfunction of central and sympathetic nervous systems and disorder of the hormone network induced by psychological stress may influence malignant progression of cancer by inhibiting the functions of immune system, regulating metabolic reprogramming of tumor cells, and inducing interactions between tumor and stromal cells. Over-release of inflammatory cytokines by tumors may aggravate emotional disorder, triggering the vicious cycles in tumor microenvironment and host macroenvironment. It is reasonable to hypothesize that cancer progression may be controlled by central and sympathetic nervous systems. In this review, we will focus on the recent information about the impacts of central and sympathetic nervous systems on tumor invasion and metastasis.
    CANCER AND METASTASIS REVIEW 05/2013; · 9.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chronic inflammation in the brain is found in a range of neurodegenerative diseases such as Parkinson's or Alzheimer's disease. We have recently shown that analogues of the glucagon-like polypeptide 1 (GLP-1) such as liraglutide have potent neuroprotective properties in a mouse model of Alzheimer's disease. We also found a reduction of activated microglia in the brain. This finding suggests that GLP-1 analogues such as liraglutide have anti-inflammatory properties. To further characterise this property, we tested the effects of liraglutide on the chronic inflammation response induced by exposure of the brain to 6Gy (X-ray). Animals were injected i.p. with 25nmol/kgonce daily for 30 days. Brains were analyzed for cytokine levels, activated microglia and astrocyte levels, and nitrite levels as a measure for nitric oxide production and protein expression of iNOS. Exposure of the brain to 6Gy induced a pronounced chronic inflammation response in the brain. The activated microglia load in the cortex and dentate gyrus region of hippocampus (P<0.001), and the activated astrocyte load in the cortex (P<0.01) was reduced by liraglutide. Furthermore, the pro-inflammatory cytokine levels of IL-6 (P<0.01), IL-12p70 (P<0.01), IL-1β (P<0.05), and total nitrite concentration were reduced in the brains of animals treated with liraglutide. The results demonstrate that liraglutideis effective in reducing a number of parameters linked to the chronic inflammation response. Liraglutide or similar GLP-1 analogues may be a suitable treatment for reducing the chronic inflammatory response in the brain found in several neurodegenerative conditions.
    European journal of pharmacology 12/2012; · 2.59 Impact Factor


Available from
May 20, 2014