Article

Interaction between Differentiating Cell- and Niche-Derived Signals in Hematopoietic Progenitor Maintenance

Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA.
Cell (Impact Factor: 33.12). 12/2011; 147(7):1589-600. DOI: 10.1016/j.cell.2011.11.041
Source: PubMed

ABSTRACT Maintenance of a hematopoietic progenitor population requires extensive interaction with cells within a microenvironment or niche. In the Drosophila hematopoietic organ, niche-derived Hedgehog signaling maintains the progenitor population. Here, we show that the hematopoietic progenitors also require a signal mediated by Adenosine deaminase growth factor A (Adgf-A) arising from differentiating cells that regulates extracellular levels of adenosine. The adenosine signal opposes the effects of Hedgehog signaling within the hematopoietic progenitor cells and the magnitude of the adenosine signal is kept in check by the level of Adgf-A secreted from differentiating cells. Our findings reveal signals arising from differentiating cells that are required for maintaining progenitor cell quiescence and that function with the niche-derived signal in maintaining the progenitor state. Similar homeostatic mechanisms are likely to be utilized in other systems that maintain relatively large numbers of progenitors that are not all in direct contact with the cells of the niche.

Download full-text

Full-text

Available from: Tina Mukherjee, Dec 17, 2014
1 Follower
 · 
229 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: eLife digest Progenitor cells are cells that can either multiply to make new copies of themselves or mature into different specialized cell types—such as blood cells. In the fruit fly Drosophila, new blood cells are formed in several different locations, including in an organ called the lymph gland. In 2011, researchers found that the fate of blood progenitor cells within the lymph gland is controlled by signals from two nearby sources—one from specialized, supportive (‘niche’) cells and the other from maturing blood cells. The signal from the maturing blood cells ensures that the relative amounts of progenitor and maturing blood cells are kept in the right balance. As a result, this signaling process has been called ‘equilibrium signaling’. Questions remain as to how equilibrium signaling is regulated, and how it interacts with signals from the niche. To investigate this, Mondal et al.—including some of the researchers involved in the 2011 work—used various genetic techniques to create Drosophila larvae in which the tissues that become blood cells are made visible with fluorescent proteins. This meant that these tissues could be examined in live, whole animals by using a microscope. Mondal et al. then searched for the Drosophila genes involved in generating new blood cells in the lymph gland—particularly those involved in equilibrium signaling. This was done by switching on and off hundreds of genes, one by one, in the lymph gland, and any genes that caused changes to the generation of new blood cells were then investigated further. Following these investigations, Mondal et al. focused on three genes—and when each of these genes was switched off in maturing blood cells, the result was that fewer progenitor cells remained in the lymph gland. This effect was not seen when the genes were switched off in the progenitor or the niche cells, which suggested that the genes are likely to be components of the equilibrium signaling pathway. Switching off these genes in maturing blood cells also dramatically reduced the levels of a protein called Pvr, a key equilibrium signaling protein known from the 2011 study and an important player in blood cell development in several species. How the newly identified genes actually control Pvr protein levels to maintain proper equilibrium signaling in the lymph gland remains to be explored. However, this work provides a basis for investigating the role of related genes in blood cell development in vertebrate systems, namely humans. DOI: http://dx.doi.org/10.7554/eLife.03626.002
    eLife Sciences 09/2014; 3:e03626. DOI:10.7554/eLife.03626 · 8.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A critical issue in development is the coordination of the activity of stem cell niches with differentiation of their progeny to ensure coherent organ growth. In the plant root, these processes take place at opposite ends of the meristem and must be coordinated with each other at a distance. Here, we show that in Arabidopsis, the gene SCR presides over this spatial coordination. In the organizing center of the root stem cell niche, SCR directly represses the expression of the cytokinin-response transcription factor ARR1, which promotes cell differentiation, controlling auxin production via the ASB1 gene and sustaining stem cell activity. This allows SCR to regulate, via auxin, the level of ARR1 expression in the transition zone where the stem cell progeny leaves the meristem, thus controlling the rate of differentiation. In this way, SCR simultaneously controls stem cell division and differentiation, ensuring coherent root growth.
    Developmental Cell 08/2013; 26(4):405-15. DOI:10.1016/j.devcel.2013.06.025 · 10.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Diabetes can be controlled with insulin injections, but a curative approach that restores the number of insulin-producing β cells is still needed. Using a zebrafish model of diabetes, we screened ~7,000 small molecules to identify enhancers of β cell regeneration. The compounds we identified converge on the adenosine signaling pathway and include exogenous agonists and compounds that inhibit degradation of endogenously produced adenosine. The most potent enhancer of β cell regeneration was the adenosine agonist 5'-N-ethylcarboxamidoadenosine (NECA), which, acting through the adenosine receptor A2aa, increased β cell proliferation and accelerated restoration of normoglycemia in zebrafish. Despite markedly stimulating β cell proliferation during regeneration, NECA had only a modest effect during development. The proliferative and glucose-lowering effect of NECA was confirmed in diabetic mice, suggesting an evolutionarily conserved role for adenosine in β cell regeneration. With this whole-organism screen, we identified components of the adenosine pathway that could be therapeutically targeted for the treatment of diabetes.
    Cell metabolism 05/2012; 15(6):885-94. DOI:10.1016/j.cmet.2012.04.018 · 16.75 Impact Factor