Article

The Differential Modulation of USP Activity by Internal Regulatory Domains, Interactors and Eight Ubiquitin Chain Types

Division of Biochemistry and Center for Biomedical Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.
Chemistry & biology (Impact Factor: 6.59). 12/2011; 18(12):1550-61. DOI: 10.1016/j.chembiol.2011.10.017
Source: PubMed

ABSTRACT Ubiquitin-specific proteases (USPs) are papain-like isopeptidases with variable inter- and intramolecular regulatory domains. To understand the effect of these domains on USP activity, we have analyzed the enzyme kinetics of 12 USPs in the presence and absence of modulators using synthetic reagents. This revealed variations of several orders of magnitude in both the catalytic turnover (k(cat)) and ubiquitin (Ub) binding (K(M)) between USPs. Further activity modulation by intramolecular domains affects both the k(cat) and K(M), whereas the intermolecular activators UAF1 and GMPS mainly increase the k(cat). Also, we provide the first comprehensive analysis comparing Ub chain preference. USPs can hydrolyze all linkages and show modest Ub-chain preferences, although some show a lack of activity toward linear di-Ub. This comprehensive kinetic analysis highlights the variability within the USP family.

Download full-text

Full-text

Available from: Dharjath Ahamed Shahul Hameed, Aug 04, 2014
0 Followers
 · 
129 Views
  • Source
    • "In contrast to the characterized USPs, which have promiscuous linkage preferences (Faesen et al., 2011), the H. sapiens OTU DUBs have more strict linkage specificities (Mevissen et al., 2013). The distinct linkage specificities associated with OTU DUBs could be exploited in restriction analyses to determine the linkage types of the ubiquitin chains conjugated on endogenous substrates (Fiil et al., 2013; Hospenthal et al., 2013; Mevissen et al., 2013), to purify ubiquitylated substrates with specific linkage types, and to assemble UB chains with specific linkage(s) (Bremm et al., 2010). "
    [Show abstract] [Hide abstract]
    ABSTRACT: The reverse reaction of ubiquitylation is catalyzed by different classes of deubiquitylation enzymes (DUBs), including ovarian tumor domain (OTU)-containing DUBs; experiments using Homo sapiens proteins have demonstrated that OTU DUBs modulate various cellular processes. With the exception of OTLD1, plant OTU DUBs have not been characterized. We identified 12 Arabidopsis thaliana OTU loci and analyzed 11 of the encoded proteins in vitro to determine their preferences for the ubiquitin (UB) chains of M1, K48, and K63 linkages as well as the UB-/RUB-/SUMO-GST fusions. The A. thaliana OTU DUBs were shown to be cysteine proteases and classified into four groups with distinct linkage preferences: OTU1 (M1=K48>K63), OTU3/4/7/10 (K63>K48>M1), OTU2/9 (K48=K63), and OTU5/11/12/OTLD1 (inactive). Five active OTU DUBs (OTU3/4/7/9/10) also cleaved RUB fusion. OTU1/3/4 cleaved M1 UB chains, suggesting a possible role for M1 chains in plant cellular signaling. The different substrate specificities of the various A. thaliana OTU DUBs indicate the involvement of distinct structural elements; for example, the OTU1 oxyanion residue D89 is essential for cleaving isopeptide bond-linked chains but dispensable for M1 chains. UB-binding activities were detected only for OTU2 and OTLD1, with distinct linkage preferences. These differences in biochemical properties support the involvement of A. thaliana OTU DUBs in different functions. Moreover, based on the established phylogenetic tree, plant- and H. sapiens-specific clades exist, which suggests that the encoded proteins have taxa-specific functions. We also detected five OTU clades that are conserved across species, which suggests that the orthologs in different species within each clade are involved in conserved cellular processes, such as ERAD and DNA damage responses. However, different linkage preferences have been detected among potential cross-species OTU orthologs, indicating functional and mechanistic differentiation.
    Frontiers in Plant Science 03/2014; 5:84. DOI:10.3389/fpls.2014.00084 · 3.95 Impact Factor
  • Source
    • "Similar to other posttranslational modifications, ubiquitination is a reversible process, and there is a family of enzymes, termed deubiquitinases (DUBs), that act on ubiquitinated substrates to catalyze the removal of ubiquitin moieties [10]. In vitro studies have shown that, while some DUBs preferentially cleave specific ubiquitin linkages [11,12], others show a notable promiscuity with respect to the type of ubiquitin linkage they can hydrolyze [13]. Importantly, a DUB that specifically cleaves linear ubiquitin chains has recently been identified [14,15]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Reversible protein ubiquitination is emerging as a key process for maintaining cell homeostasis, and the enzymes that participate in this process, in particular E3 ubiquitin ligases and deubiquitinases (DUBs), are increasingly being regarded as candidates for drug discovery. Human DUBs are a group of approximately 100 proteins, whose cellular functions and regulatory mechanisms remain, with some exceptions, poorly characterized. One of the best-characterized human DUBs is ubiquitin-specific protease 1 (USP1), which plays an important role in the cellular response to DNA damage. USP1 levels, localization and activity are modulated through several mechanisms, including protein-protein interactions, autocleavage/degradation and phosphorylation, ensuring that USP1 function is carried out in a properly regulated spatio-temporal manner. Importantly, USP1 expression is deregulated in certain types of human cancer, suggesting that USP1 could represent a valid target in cancer therapy. This view has gained recent support with the finding that USP1 inhibition may contribute to revert cisplatin resistance in an in vitro model of non-small cell lung cancer (NSCLC). Here, we describe the current knowledge on the cellular functions and regulatory mechanisms of USP1. We also summarize USP1 alterations found in cancer, combining data from the literature and public databases with our own data. Finally, we discuss the emerging potential of USP1 as a target, integrating published data with our novel findings on the effects of the USP1 inhibitor pimozide in combination with cisplatin in NSCLC cells.
    Molecular Cancer 08/2013; 12(1):91. DOI:10.1186/1476-4598-12-91 · 5.40 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ubiquitination/ubiquitylation is involved in a wide range of cellular processes in eukaryotes, such as protein degradation and DNA repair. Ubiquitination is a reversible post-translational modification, with the removal of the ubiquitin (Ub) protein being catalyzed by a family of enzymes known as deubiquitinases (DUBs). Approximately 100 DUBs are encoded in the human genome and are involved in a variety of regulatory processes, such as cell-cycle progression, tissue development, and differentiation. DUBs were, moreover, found to be associated with several diseases and as such are emerging as potential therapeutic targets. Several directions have been pursued in the search for lead anti-DUB compounds. However, none of these strategies have delivered inhibitors reaching advanced clinical stages due to several challenges in the discovery process, such as the absence of a highly sensitive and practically available high-throughput screening assay. In this study, we report on the design and preparation of a FRET-based assay for DUBs based on the application of our recent chemical method for the synthesis of Ub bioconjugates. In the assay, the ubiquitinated peptide was specifically labeled with a pair of FRET labels and used to screen a library comprising 1000 compounds against UCH-L3. Such analysis identified a novel and potent inhibitor able to inhibit this DUB in time-dependent manner with k(inact) = 0.065 min(-1) and K(i) = 0.8 μM. Our assay, which was also found suitable for the UCH-L1 enzyme, should assist in the ongoing efforts targeting the various components of the ubiquitin system and studying the role of DUBs in health and disease.
    Journal of the American Chemical Society 02/2012; 134(6):3281-9. DOI:10.1021/ja2116712 · 11.44 Impact Factor
Show more