Changes in human fecal microbiota due to chemotherapy analyzed by TaqMan-PCR, 454 sequencing and PCR-DGGE fingerprinting.

Department of Nutritional Sciences, Vienna, Austria.
PLoS ONE (Impact Factor: 3.53). 01/2011; 6(12):e28654. DOI: 10.1371/journal.pone.0028654
Source: PubMed

ABSTRACT We investigated whether chemotherapy with the presence or absence of antibiotics against different kinds of cancer changed the gastrointestinal microbiota.
Feces of 17 ambulant patients receiving chemotherapy with or without concomitant antibiotics were analyzed before and after the chemotherapy cycle at four time points in comparison to 17 gender-, age- and lifestyle-matched healthy controls. We targeted 16S rRNA genes of all bacteria, Bacteroides, bifidobacteria, Clostridium cluster IV and XIVa as well as C. difficile with TaqMan qPCR, denaturing gradient gel electrophoresis (DGGE) fingerprinting and high-throughput sequencing. After a significant drop in the abundance of microbiota (p = 0.037) following a single treatment the microbiota recovered within a few days. The chemotherapeutical treatment marginally affected the Bacteroides while the Clostridium cluster IV and XIVa were significantly more sensitive to chemotherapy and antibiotic treatment. DGGE fingerprinting showed decreased diversity of Clostridium cluster IV and XIVa in response to chemotherapy with cluster IV diversity being particularly affected by antibiotics. The occurrence of C. difficile in three out of seventeen subjects was accompanied by a decrease in the genera Bifidobacterium, Lactobacillus, Veillonella and Faecalibacterium prausnitzii. Enterococcus faecium increased following chemotherapy.
Despite high individual variations, these results suggest that the observed changes in the human gut microbiota may favor colonization with C. difficile and Enterococcus faecium. Perturbed microbiota may be a target for specific mitigation with safe pre- and probiotics.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mixed microbial infections of the respiratory tracts with P. aeruginosa and A. fumigatus capable of producing biofilms are commonly found in cystic fibrosis patients. The primary objective of this study was to develop an in vitro model for P. aeruginosa and A. fumigatus polymicrobial biofilm to study the efficacy of various antimicrobial drugs alone and in combinations against biofilm-embedded cells. Simultaneous static cocultures of P. aeruginosa and sporelings were used for the development of in vitro P. aeruginosa-A. fumigatus polymicrobial biofilm in SD broth in 24-well cell culture plates at 35oC, and the biofilm formation was monitored microscopically and spectrophotometrically. Using P. aeruginosa-A. fumigatus sporelings cocultures we examined the effects of various antimicrobial drugs alone and in combination against polymicrobial biofilm by CFU and tetrazolium reduction assays. In simultaneous static cocultures P. aeruginosa cells killed A. fumigatus conidia, whereas the bacterial cells showed no substantial fungicidal effect on sporelings grown for 12 h or longer at 35oC. Monospecies cultures of P. aeruginosa produced loosely adhered monomicrobial biofilm and addition of 10% bovine serum to the growth medium inhibited the formation of monomicrobial biofilm by P. aeruginosa whereas it produced tightly adhered polymicrobial biofilm in the presence of A. fumigatus mycelial growth. A. fumigatus produced firmly adherent monomicrobial and polymicrobial biofilms. A comparison of CFU and MTT assays showed that the latter is unsuitable for studying the effectiveness of antimicrobial treatment against polymicrobial biofilm. Tobramycin alone and in combination with posaconazole was highly effective against monomicrobial and polymicrobial biofilms of P. aeruginosa whereas cefepime alone and in combination with posaconazole showed excellent activity against monomicrobial biofilm of P. aeruginosa but was less effective against polymicrobial biofilm. Monomicrobial and polymicrobial biofilms of A. fumigatus showed similar susceptibility to posaconazole with and without the antibacterial drug. Simultaneous static coculture of A. fumigatus sporelings grown for 12 h or longer was superior to ungerminated conidia with P. aeruginosa for the development of A. fumigatus-P. aeruginosa biofilm. P. aeruginosa-A. fumigatus polymicrobial biofilm shows differential susceptibility to antimicrobial drugs whereas the susceptibility of A. fumigatus to antimicrobial drugs was unchanged.
    BMC Microbiology 03/2014; 14(1):53. · 2.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: There is clear evidence that nutrition and lifestyle can modify colorectal cancer risk. However, it is not clear if those factors can affect colorectal cancer treatment, recurrence, survival and quality of life. This paper describes the background and design of the "COlorectal cancer: Longitudinal, Observational study on Nutritional and lifestyle factors that may influence colorectal tumour recurrence, survival and quality of life" - COLON - study. The main aim of this study is to assess associations of diet and other lifestyle factors, with colorectal cancer recurrence, survival and quality of life. We extensively investigate diet and lifestyle of colorectal cancer patients at diagnosis and during the following years; this design paper focusses on the initial exposures of interest: diet and dietary supplement use, body composition, nutrient status (e.g. vitamin D), and composition of the gut microbiota.Methods/design: The COLON study is a multi-centre prospective cohort study among at least 1,000 incident colorectal cancer patients recruited from 11 hospitals in the Netherlands. Patients with colorectal cancer are invited upon diagnosis. Upon recruitment, after 6 months, 2 years and 5 years, patients fill out food-frequency questionnaires; questionnaires about dietary supplement use, physical activity, weight, height, and quality of life; and donate blood samples. Diagnostic CT-scans are collected to assess cross-sectional areas of skeletal muscle, subcutaneous fat, visceral fat and intermuscular fat, and to assess muscle attenuation. Blood samples are biobanked to facilitate future analyse of biomarkers, nutrients, DNA etc. Analysis of serum 25-hydroxy vitamin D levels, and analysis of metabolomic profiles are scheduled. A subgroup of patients with colon cancer is asked to provide faecal samples before and at several time points after colon resection to study changes in gut microbiota during treatment. For all patients, information on vital status is retrieved by linkage with national registries. Information on clinical characteristics is gathered from linkage with the Netherlands Cancer Registry and with hospital databases. Hazards ratios will be calculated for dietary and lifestyle factors at diagnosis in relation to recurrence and survival. Repeated measures analyses will be performed to assess changes over time in dietary and other factors in relation to recurrence and survival.
    BMC Cancer 05/2014; 14(1):374. · 3.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Oral mucositis is one of the most prevalent toxicities after hematopoietic stem cell transplantation. Mucositis is initiated by the chemotherapy or radiotherapy preceding the transplantation. It is commonly accepted that microorganisms play a role in the process of oral mucositis. Despite the upcoming techniques to determine the whole oral bacterial ecosystem, the exact role of the microflora in mucositis is not yet understood. This article provides an overview of the state-of-the-art research on the oral microflora and mucositis. A shift in microflora, in both the intestine and the oral cavity, can be found after chemotherapy or radiation therapy. The presence of oral ulcerative mucositis coincides with the presence of periodontitis-associated bacteria, in particular Porphyromonas gingivalis. Moreover, this bacterium can inhibit wound healing processes in an in-vitro model. We come to realize that some diseases are associated with a shift in the microflora. The role of the microflora in oral and intestinal mucositis is gaining more attention in recent literature. In the oral cavity, periodontitis-associated bacteria may influence the healing of ulcerations and the role they play in mucositis may be more subtle and complicated than was previously thought.
    Current opinion in supportive and palliative care 04/2014;

Full-text (2 Sources)

Available from
Jun 3, 2014