Changes in human fecal microbiota due to chemotherapy analyzed by TaqMan-PCR, 454 sequencing and PCR-DGGE fingerprinting.

Department of Nutritional Sciences, Vienna, Austria.
PLoS ONE (Impact Factor: 3.53). 01/2011; 6(12):e28654. DOI: 10.1371/journal.pone.0028654
Source: PubMed

ABSTRACT We investigated whether chemotherapy with the presence or absence of antibiotics against different kinds of cancer changed the gastrointestinal microbiota.
Feces of 17 ambulant patients receiving chemotherapy with or without concomitant antibiotics were analyzed before and after the chemotherapy cycle at four time points in comparison to 17 gender-, age- and lifestyle-matched healthy controls. We targeted 16S rRNA genes of all bacteria, Bacteroides, bifidobacteria, Clostridium cluster IV and XIVa as well as C. difficile with TaqMan qPCR, denaturing gradient gel electrophoresis (DGGE) fingerprinting and high-throughput sequencing. After a significant drop in the abundance of microbiota (p = 0.037) following a single treatment the microbiota recovered within a few days. The chemotherapeutical treatment marginally affected the Bacteroides while the Clostridium cluster IV and XIVa were significantly more sensitive to chemotherapy and antibiotic treatment. DGGE fingerprinting showed decreased diversity of Clostridium cluster IV and XIVa in response to chemotherapy with cluster IV diversity being particularly affected by antibiotics. The occurrence of C. difficile in three out of seventeen subjects was accompanied by a decrease in the genera Bifidobacterium, Lactobacillus, Veillonella and Faecalibacterium prausnitzii. Enterococcus faecium increased following chemotherapy.
Despite high individual variations, these results suggest that the observed changes in the human gut microbiota may favor colonization with C. difficile and Enterococcus faecium. Perturbed microbiota may be a target for specific mitigation with safe pre- and probiotics.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Clostridium difficile infection (CDI) remains a major healthcare burden despite recent global falls in its prevalence. The risk of recurrence is high when using antibiotics such as vancomycin, particularly in already recurrent disease. In light of this, new therapy options are being perused, including novel antibiotics such as fidaxomicin, probiotics, intravenous immunoglobulin and faecal transplantation. Faecal transplantation, referred to here as human probiotic infusion (HPI), is attracting an increasing amount of interest from physicians and patients. Its use has been documented in ca. 500 cases for the treatment of CDI, with overall efficacy rates reported to be ca. 91%. The first randomised controlled trial (RCT) demonstrated that HPI was superior to a 14-day course of vancomycin (94% vs. 31%; P < 0.001) and reported no deaths or serious adverse events. Safety and patient acceptability are often cited as limitations to the widespread use of this technique. However, data suggest that the short-term safety profile is encouraging, and concerns over patient acceptability are not warranted in the majority of cases. It seems appropriate to treat an infection which is caused by a major disturbance in the gut microbiota with a treatment that reverses this disturbance, rather than antibiotics that may exacerbate the problem. However, to fully understand the role of HPI in the management of CDI, further RCTs are needed with comparator antibiotics such as fidaxomicin and to establish the most efficacious HPI protocol for administration and preparation.
    International journal of antimicrobial agents 01/2013; · 3.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CPT-11 is a drug used as chemotherapy for colorectal cancer. CPT-11 causes toxic side-effects in patients. CPT-11 toxicity has been attributed to the activity of intestinal microbiota, however, intestinal microbiota may also have protective effects in CP!-11 chemotherapy. This study aimed to elucidate mechanisms through which microbiota and dietary fibres could modify host health. Rats bearing a Ward colon carcinoma were treated with a two-cycle CPT-11/5-fluorouracil therapy recapitulating clinical therapy of colorectal cancer. Animals were fed with a semi-purified diet or a semi-purified diet was supplemented with non-digestible carbohydrates (isomalto-oligosaccharides, resistant starch, fructo-oligosaccharides, or inulin) in 3 independent experiments. Changes in intestinal microbiota, bacteria translocating to mesenteric lymphnodes, cecal GUD activity, and cecal SCFA production, and the intestinal concentration of CPT-11 and its metabolites were analysed. Non-digestible carbohydrates significantly influenced feed intake, body weight and other indicators of animal health. The identification of translocating bacteria and their quantification in cecal microbiota indicated that overgrowth of the intestine by opportunistic pathogens was not a major contributor to CPT-11 toxicity. Remarkably, fecal GUD activity positively correlated to body weight and feed intake but negatively correlated to cecal SN-38 concentrations and IL1-β. The reduction in CPT-11 toxicity by non-digestible carbohydrates did not correlate to stimulation of specific bacterial taxa. However, cecal butyrate concentrations and feed intake were highly correlated. The protective role of intestinal butyrate production was substantiated by a positive correlation of the host expression of MCT1 (monocarboxylate transporter 1) with body weight as well as a positive correlation of the abundance of bacterial butyryl-CoA gene with cecal butyrate concentrations. These correlations support the interpretation that the influence of dietary fibre on CPT-11 toxicity is partially mediated by an increased cecal production of butyrate.
    PLoS ONE 01/2014; 9(1):e83644. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pathogenic and protective roles have been attributed to gut commensal microbiota (GCM) in gastrointestinal inflammatory and functional disorders. We have shown that the adaptation to a new environment implies specific changes in the composition of GCM. Here we assessed if environment-related adaptive changes of GCM modulate the expression of colonic Toll-like receptors (TLRs) and sensory-related systems in rats. Adult male SD rats were maintained under different environmental conditions: barrier-breed-and-maintained, barrier-breed adapted to conventional conditions or conventional-breed-and-maintained. Fluorescent in situ hybridization and real-time quantitative PCR (qPCR) were used to characterize luminal ceco-colonic microbiota. Colonic expression of TLR2, TLR4, TLR5, and TLR7, cannabinoid receptors (CB1/CB2), μ-opioid receptor (MOR), transient receptor potential vanilloid (TRPV1, TRPV3, and TRPV4), protease-activated receptor 2 (PAR-2), and calcitonin gene-related peptide were quantified by RT-qPCR. CB1, CB2 and MOR expression, was evaluated also by immunohistochemistry. In rats, housing-related environmental conditions induce specific changes of GCM, without impact on the expression of TLR-dependent bacterial recognition systems. Expression of sensory-related markers (MOR, TRPV3, PAR-2, and CB2) decreased with the adaptation to a conventional environment, correlating with changes in Bacteroides spp., Lactobacillus spp., and Bifidobacterium spp. counts. This suggests an interaction between GCM and visceral sensory mechanisms, which might be part of the mechanisms underlying the beneficial effects of some bacterial groups on functional and inflammatory gastrointestinal disorders.
    Microbial Ecology 05/2013; · 3.28 Impact Factor

Full-text (2 Sources)

Available from
Jun 3, 2014