Article

Changes in Human Fecal Microbiota Due to Chemotherapy Analyzed by TaqMan-PCR, 454 Sequencing and PCR-DGGE Fingerprinting

Department of Nutritional Sciences, Vienna, Austria.
PLoS ONE (Impact Factor: 3.53). 12/2011; 6(12):e28654. DOI: 10.1371/journal.pone.0028654
Source: PubMed

ABSTRACT We investigated whether chemotherapy with the presence or absence of antibiotics against different kinds of cancer changed the gastrointestinal microbiota.
Feces of 17 ambulant patients receiving chemotherapy with or without concomitant antibiotics were analyzed before and after the chemotherapy cycle at four time points in comparison to 17 gender-, age- and lifestyle-matched healthy controls. We targeted 16S rRNA genes of all bacteria, Bacteroides, bifidobacteria, Clostridium cluster IV and XIVa as well as C. difficile with TaqMan qPCR, denaturing gradient gel electrophoresis (DGGE) fingerprinting and high-throughput sequencing. After a significant drop in the abundance of microbiota (p = 0.037) following a single treatment the microbiota recovered within a few days. The chemotherapeutical treatment marginally affected the Bacteroides while the Clostridium cluster IV and XIVa were significantly more sensitive to chemotherapy and antibiotic treatment. DGGE fingerprinting showed decreased diversity of Clostridium cluster IV and XIVa in response to chemotherapy with cluster IV diversity being particularly affected by antibiotics. The occurrence of C. difficile in three out of seventeen subjects was accompanied by a decrease in the genera Bifidobacterium, Lactobacillus, Veillonella and Faecalibacterium prausnitzii. Enterococcus faecium increased following chemotherapy.
Despite high individual variations, these results suggest that the observed changes in the human gut microbiota may favor colonization with C. difficile and Enterococcus faecium. Perturbed microbiota may be a target for specific mitigation with safe pre- and probiotics.

0 Bookmarks
 · 
509 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Gastrointestinal mucositis is defined as inflammation and/or ulcers of the gastrointestinal tract occurring as a complication of chemotherapy and radiation therapy, and affects about 50% of all cancer patients.AimTo assess the role of gut microbiota in the pathogenesis of gastrointestinal mucositis and the potential for manipulations of the microbiota to prevent and to treat mucositis.Methods Search of the literature published in English using Medline, Scopus and the Cochrane Library, with main search terms ‘intestinal microbiota’, ‘bacteremia’, ‘mucositis’, ‘chemotherapy-induced diarrhoea’, ‘chemotherapy-induced mucositis’, ‘radiotherapy-induced mucositis’.ResultsThe gut microbiota plays a major role in the maintenance of intestinal homoeostasis and integrity. Patients receiving cytotoxic and radiation therapy exhibit marked changes in intestinal microbiota, with most frequently, decrease in Bifidobacterium, Clostridium cluster XIVa, Faecalibacterium prausnitzii, and increase in Enterobacteriaceae and Bacteroides. These modifications may contribute to the development of mucositis, particularly diarrhoea and bacteraemia. The prevention of cancer therapy-induced mucositis by probiotics has been investigated in randomised clinical trials with some promising results. Three of six trials reported a significantly decreased incidence of diarrhoea. One trial reported a decrease in infectious complications.Conclusions The gut microbiota may play a major role in the pathogenesis of mucositis through the modification of intestinal barrier function, innate immunity and intestinal repair mechanisms. Better knowledge of these effects may lead to new therapeutic approaches and to the identification of predictive markers of mucositis.
    Alimentary Pharmacology & Therapeutics 07/2014; · 4.55 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study describes a novel validation procedure of real-time PCR based on accuracy profile to estimate bacterial concentrations in fecal samples. To assess the performance of the method, measurements of axenic fecal samples spiked with a measured quantity of known bacterial species (Bacteroides fragilis, Bifidobacterium adolescentis, Enterococcus faecium, and Escherichia coli) were performed under repeatability and intermediate precision conditions. Data collected were used to compute a tolerance interval that was compared to a defined acceptance interval. It is concluded that the method is valid and relevant for the studied validation range of 8.20-10.24 and 7.43-9.47 log10 CFU/g of feces to ensure proper measurement of B. fragilis and E. coli, respectively. The LOQ is 8.20 and 7.43 log10 CFU/g of feces. In contrast, the method is not valid for the quantification of E. faecium and B. adolescentis, but by applying a correction factor of +0.63 log10 CFU/g, it can be considered valid for E. faecium. This correction is included in the final results. In conclusion, the accuracy profile is a statistical tool that is easy to use and totally adapted to validate real-time PCR.
    Journal of AOAC International 03/2014; 97(2):573-9. · 1.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Non-communicable diseases (NCDs) such as cardiovascular disease, cancers, diabetes and obesity are responsible for about two thirds of mortality worldwide, and all of these ailments share a common low-intensity systemic chronic inflammation, endoplasmic reticulum stress (ER stress), and the ensuing Unfolded Protein Response (UPR). These adaptive mechanisms are also responsible for significant metabolic changes that feedback with the central clock of the suprachiasmatic nucleus (SCN) of the hypothalamus, as well as with oscillators of peripheral tissues. In this review we attempt to use a systems biology approach to explore such interactions as a whole; to answer two fundamental questions: (1) how dependent are these adaptive responses and subsequent events leading to NCD with their state of synchrony with the SCN and peripheral oscillators? And, (2) How could modifiers of the activity of SCN for instance, food intake, exercise, and drugs, be potentially used to modulate systemic inflammation and ER stress to ameliorate or even prevent NCDs?
    Endoplasmic Reticulum Stress in Diseases. 01/2015; 2:30-52.

Full-text (2 Sources)

Download
129 Downloads
Available from
Jun 3, 2014