Changes in Human Fecal Microbiota Due to Chemotherapy Analyzed by TaqMan-PCR, 454 Sequencing and PCR-DGGE Fingerprinting

Department of Nutritional Sciences, Vienna, Austria.
PLoS ONE (Impact Factor: 3.53). 12/2011; 6(12):e28654. DOI: 10.1371/journal.pone.0028654
Source: PubMed

ABSTRACT We investigated whether chemotherapy with the presence or absence of antibiotics against different kinds of cancer changed the gastrointestinal microbiota.
Feces of 17 ambulant patients receiving chemotherapy with or without concomitant antibiotics were analyzed before and after the chemotherapy cycle at four time points in comparison to 17 gender-, age- and lifestyle-matched healthy controls. We targeted 16S rRNA genes of all bacteria, Bacteroides, bifidobacteria, Clostridium cluster IV and XIVa as well as C. difficile with TaqMan qPCR, denaturing gradient gel electrophoresis (DGGE) fingerprinting and high-throughput sequencing. After a significant drop in the abundance of microbiota (p = 0.037) following a single treatment the microbiota recovered within a few days. The chemotherapeutical treatment marginally affected the Bacteroides while the Clostridium cluster IV and XIVa were significantly more sensitive to chemotherapy and antibiotic treatment. DGGE fingerprinting showed decreased diversity of Clostridium cluster IV and XIVa in response to chemotherapy with cluster IV diversity being particularly affected by antibiotics. The occurrence of C. difficile in three out of seventeen subjects was accompanied by a decrease in the genera Bifidobacterium, Lactobacillus, Veillonella and Faecalibacterium prausnitzii. Enterococcus faecium increased following chemotherapy.
Despite high individual variations, these results suggest that the observed changes in the human gut microbiota may favor colonization with C. difficile and Enterococcus faecium. Perturbed microbiota may be a target for specific mitigation with safe pre- and probiotics.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Commensal microorganisms colonize barrier surfaces of all multicellular organisms, including those of humans. For more than 500 million years, commensal microorganisms and their hosts have coevolved and adapted to each other. As a result, the commensal microbiota affects many immune and non-immune functions of their hosts, and de facto the two together comprise one metaorganism. The commensal microbiota communicates with the host via biologically active molecules. Recently, it has been reported that microbial imbalance may play a critical role in the development of multiple diseases, such as cancer, autoimmune conditions and increased susceptibility to infection. In this review we focus on the role of the commensal microbiota in the development, progression and immune evasion of cancer, as well as some modulatory effects on the treatment of cancer. In particular, we discuss the mechanisms of microbiota-mediated regulation of innate and adaptive immune responses to tumors, and the consequences on cancer progression and whether tumors subsequently become resistant or susceptible to different anti-cancer therapeutic regiments.This article is protected by copyright. All rights reserved
    European Journal of Immunology 10/2014; 45(1). DOI:10.1002/eji.201444972 · 4.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Clostridium difficile infection (CDI) prevention is particularly important for cancer patients, because diarrhea often results in dose reductions or delays of chemotherapy or radiotherapy. We conducted this study to better ascertain the incidence, susceptibility, and risk factors for CDI in cancer patients receiving chemotherapy at our hospital. We performed a retrospective study among adult cancer patients admitted at "12 de Octubre" University Hospital between January 2009 through April 2013 who were diagnosed with diarrhea. Inpatient data were available on hospital medical records. We screened by immunochromatography system detecting glutamate dehydrogenase antigen, and C. difficile toxins A and B. Later, a polymerase chain reaction for detecting toxin B gene was performed. A total of 225 patients were included in the study, and 39 of them (17.3 %) were diagnosed with CDI. Type of tumor significantly differed between CDI patients, thus relative risk in each type of cancer was calculated after adjusting for age, antibiotic exposure, corticosteroid, and proton-pump inhibitor use. Patients with gastrointestinal tumors were less prone to CDI. Conversely, breast cancer patients have a greater predisposition to CDI. Antibiotic treatment was found to be associated with an increasing risk for CDI in breast cancer patients. Curiously, exposure to proton-pump inhibitors appeared protective in our cohort, except for lung cancer patients. However, we have not been able to find an association between a particular type of chemotherapy and CDI. We underscore the urgent need for early recognition and diagnosis of CDI in cancer patients. Our findings indicate a probable association between antibiotic use and CDI incidence, at least in certain cancer, such as breast cancer.
    Supportive Care Cancer 11/2014; DOI:10.1007/s00520-014-2506-7 · 2.50 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Non-communicable diseases (NCDs) such as cardiovascular disease, cancers, diabetes and obesity are responsible for about two thirds of mortality worldwide, and all of these ailments share a common low-intensity systemic chronic inflammation, endoplasmic reticulum stress (ER stress), and the ensuing Unfolded Protein Response (UPR). These adaptive mechanisms are also responsible for significant metabolic changes that feedback with the central clock of the suprachiasmatic nucleus (SCN) of the hypothalamus, as well as with oscillators of peripheral tissues. In this review we attempt to use a systems biology approach to explore such interactions as a whole; to answer two fundamental questions: (1) how dependent are these adaptive responses and subsequent events leading to NCD with their state of synchrony with the SCN and peripheral oscillators? And, (2) How could modifiers of the activity of SCN for instance, food intake, exercise, and drugs, be potentially used to modulate systemic inflammation and ER stress to ameliorate or even prevent NCDs?

Full-text (3 Sources)

Available from
Jun 3, 2014