Article

SMYD3 Promotes Cancer Invasion by Epigenetic Upregulation of the Metalloproteinase MMP-9

Université Paris Diderot, Sorbonne Paris Cité, CNRS UMR7216 Epigénétique et Destin Cellulaire, Université Paris Descartes, Sorbonne Paris Cité, Inserm U1016, Paris, France.
Cancer Research (Impact Factor: 9.28). 12/2011; 72(3):810-20. DOI: 10.1158/0008-5472.CAN-11-1052
Source: PubMed

ABSTRACT Upregulation of the matrix metalloproteinase (MMP)-9 plays a central role in tumor progression and metastasis by stimulating cell migration, tumor invasion, and angiogenesis. To gain insights into MMP-9 expression, we investigated its epigenetic control in a reversible model of cancer that is initiated by infection with intracellular Theileria parasites. Gene induction by parasite infection was associated with trimethylation of histone H3K4 (H3K4me3) at the MMP-9 promoter. Notably, we found that the H3K4 methyltransferase SMYD3 was the only histone methyltransferase upregulated upon infection. SMYD3 is overexpressed in many types of cancer cells, but its contributions to malignant pathophysiology are unclear. We found that overexpression of SMYD3 was sufficient to induce MMP-9 expression in transformed leukocytes and fibrosarcoma cells and that proinflammatory phorbol esters further enhanced this effect. Furthermore, SMYD3 was sufficient to increase cell migration associated with MMP-9 expression. In contrast, RNA interference-mediated knockdown of SMYD3 decreased H3K4me3 modification of the MMP-9 promoter, reduced MMP-9 expression, and reduced tumor cell proliferation. Furthermore, SMYD3 knockdown also reduced cellular invasion in a zebrafish xenograft model of cancer. Together, our results define SMYD3 as an important new regulator of MMP-9 transcription, and they provide a molecular link between SMYD3 overexpression and metastatic cancer progression.

Download full-text

Full-text

Available from: Jonathan B Weitzman, Jun 19, 2015
1 Follower
 · 
184 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Zebrafish have emerged as a powerful model of development and cancer. Human, mouse, and zebrafish malignancies exhibit striking histopathologic and molecular similarities, underscoring the remarkable conservation of genetic pathways required to induce cancer. Zebrafish are uniquely suited for large-scale studies in which hundreds of animals can be used to investigate cancer processes. Moreover, zebrafish are small in size, optically clear during development, and amenable to genetic manipulation. Facile transgenic approaches and new technologies in gene inactivation have provided much needed genomic resources to interrogate the function of specific oncogenic and tumor suppressor pathways in cancer. This manuscript focuses on the unique attribute of labeling leukemia cells with fluorescent proteins and directly visualizing cancer processes in vivo including tumor growth, dissemination, and intravasation into the vasculature. We will also discuss the use of fluorescent transgenic approaches and cell transplantation to assess leukemia-propagating cell frequency and response to chemotherapy.
    Advances in Hematology 07/2012; 2012:478164. DOI:10.1155/2012/478164
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The SMYD3 histone methyl transferase (HMTase) and the nuclear chaperone, HSP90, have been independently implicated as proto-oncogenes in several human malignancies. We show that a degenerate tetratricopeptide repeat (TPR)-like domain encoded in the SMYD3 C-terminal domain (CTD) mediates physical interaction with HSP90. We further demonstrate that the CTD of SMYD3 is essential for its basal HMTase activity and that the TPR-like structure is required for HSP90-enhanced enzyme activity. Loss of SMYD3-HSP90 interaction leads to SMYD3 mislocalization within the nucleus, thereby losing its chromatin association. This results in reduction of SMYD3-mediated cell proliferation and, potentially, impairment of SMYD3's oncogenic activity. These results suggest a novel approach for blocking HSP90-driven malignancy in SMYD3-overexpressing cells with a reduced toxicity profile over current HSP90 inhibitors.
    Oncotarget 02/2015; · 6.63 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The p160/steroid receptor coactivator (SRC) family comprises three pleiotropic coregulators (SRC-1, -2, and -3; otherwise known as NCOA1, NCOA2, NCOA3), which modulate a wide spectrum of physiological responses and clinicopathologies. Such pleiotropy is achieved through their inherent structural complexity, which allows this coregulator class to control both nuclear receptor (NR) and non-NR signaling. As observed in other physiologic systems, members of the SRC family have recently been shown to play pivotal roles in uterine biology and pathobiology. In the murine uterus, SRC-1 is required to launch a full steroid hormone response, without which endometrial decidualization is markedly attenuated. From "dove-tailing" clinical and mouse studies, an isoform of SRC-1 was recently identified which promotes endometriosis by reprogramming endometrial cells to evade apoptosis and colonize as endometriotic lesions within the peritoneal cavity. The endometrium fails to decidualize without SRC-2, which accounts for the infertility phenotype exhibited by mice devoid of this coregulator. In related studies on human endometrial stromal cells (ESCs), SRC-2 was shown to act as a molecular "pace maker" of the glycolytic flux. This finding is significant as acceleration of the glycolytic flux provides the necessary bioenergy and biomolecules for ESCs to switch from quiescence to a proliferative phenotype, a critical underpinning in the decidual progression program. Though studies on uterine SRC-3 function are in their early stages, clinical studies provide tantalizing support for the proposal that SRC-3 is causally linked to endometrial hyperplasia as well as with endometrial pathologies in patients diagnosed with polycystic ovary syndrome. This proposal is now driving the development and application of innovative technologies particularly in the mouse to further understand the functional role of this elusive uterine coregulator in normal and abnormal physiologic contexts. Because dysregulation of this coregulator triad potentially presents a triple threat for increased risk of subfecundity, infertility, or endometrial disease, a clearer understanding of the individual and combinatorial roles of these coregulators in uterine function is urgently required. This minireview summarizes our current understanding of uterine SRC function, with a particular emphasis on the next critical questions that need to be addressed to ensure significant expansion of our knowledge of this underexplored field of uterine biology.
    Biology of Reproduction 10/2014; DOI:10.1095/biolreprod.114.125021 · 3.45 Impact Factor