ARX homeodomain mutations abolish DNA binding and lead to a loss of transcriptional repression.

Department of Genetics and Molecular Pathology, SA Pathology at the Women’s and Children’s Hospital, North Adelaide, South Australia 5006, Australia.
Human Molecular Genetics (Impact Factor: 6.68). 12/2011; 21(7):1639-47. DOI: 10.1093/hmg/ddr601
Source: PubMed

ABSTRACT Mutations in the Aristaless-related homeobox (ARX) gene are one of the most frequent causes of X-linked intellectual disability (ID). Several missense mutations, clustered in the paired-type homeodomain of ARX, have been identified. These mutations lead to a range of phenotypes from X-linked lissencephaly with abnormal genitalia to seizure disorders without brain malformations including X-linked infantile spasms with ID (ISSX-ID) and X-linked myoclonic epilepsy with spasticity and ID (XMESID). The effect of these mutations on the DNA-binding and transcriptional activity has been evaluated. Luciferase reporter assays showed altered repression activity of ARX by all mutations, causing brain malformations and ISSX-ID phenotypes, but not by the P353L mutation implicated in a milder phenotype of XMESID. Similarly, transient overexpression of wild-type ARX repressed endogenous expression of known ARX targets, LMO1 and SHOX2, when measured by real-time quantitative polymerase chain reaction. Overall, the molecular consequence of missense mutations correlated well with the severity of the clinical phenotype. In all mutations tested, except P353L, the DNA binding was abolished. Electrophoretic mobility shift assay results were validated using chromatin immunoprecipitation following overexpression of normal and selected missense mutations. Unlike wild-type ARX and clinically less severe mutations, the mutations leading to severe clinical phenotypes were not able to specifically bind to DNA upstream of known, endogenous ARX-regulated genes, LMO1 and SHOX2. In conclusion, the missense mutations in the ARX homeodomain represent loss-of-function mutations, which lead to a reduced or complete loss of DNA binding and as a consequence, a loss of transcriptional repression.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Co-immunoprecipitation (Co-IP) (followed by immunoblotting) is a technique widely used to characterize specific protein-protein interactions. Investigating interactions of proteins containing "sticky" polyalanine (PolyA) tracts encounters difficulties using conventional Co-IP procedures. Here, we present strategies to specifically capture proteins containing these difficult PolyA tracts, enabling subsequent robust detection of interacting proteins by Co-IP.
    Methods in molecular biology (Clifton, N.J.) 01/2013; 1017:121-133. DOI:10.1007/978-1-62703-438-8_9 · 1.29 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nucleocytoplasmic transport of transcription factors is essential in eukaryotes. We previously reported the presence of two functional NLSs in the homeodomain protein, aristaless-related homeobox (Arx) protein, which is a key transcriptional repressor of LMO1, SHOX2, and PAX4 during development. NLS2, that overlaps the homeodomain, is recognized directly by multiple importin βs, but not by importin αs. In this study, we found that the N-terminal NLS1 of Arx is targeted by multiple importin α proteins, including importin α3 and α5. Both in vivo and in vitro assays demonstrated that nuclear import of Arx via NLS1 is mediated by the importin α/β pathway. Mutagenesis analysis indicated that two basic amino acids, (84)K and (87)R, are essential to the function of NLS1, and that their mutation prevents interactions of Arx with importin αs. Interestingly, inhibition of nuclear import of Arx via NLS1 clearly attenuates its ability of transcriptional repression, suggesting that nuclear import of Arx via NLS1 contributes to its transcriptional function.
    Molecular and Cellular Biochemistry 06/2013; DOI:10.1007/s11010-013-1706-7 · 2.39 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Epilepsy is a common and diverse set of chronic neurological disorders characterized by spontaneous, unprovoked, and recurrent epileptic seizures. Environmental factors and acquired disposition are proposed to play a role to the pathogenesis of epilepsy. Genetic factors are important contributors as well. Comparing to the phenotype of epilepsy caused by mutation of single gene on an autosome, the phenotype of X-linked epilepsy is more complex. X-linked epilepsy usually manifests as part of a syndrome or epileptic encephalopathy, and the variability of clinical manifestations of X-linked epilepsy may be attributed to several factors including the type of genetic mutation, methylation, X chromosome random inactivation, and mosaic distribution. As a result, it is difficult to establish the genotype-phenotype correlation, diagnostic tests, and genetic counseling. In this review, we provide an overview of the X-linked epilepsy including responsible loci and genes, the molecular biology, the associated complex phenotypes, and the interference factors. This information may provide us a better understanding of the pathogenesis of X-linked epilepsy and may contribute to clinical diagnosis and therapy of epilepsy.
    Molecular Neurobiology 11/2013; DOI:10.1007/s12035-013-8589-1 · 5.29 Impact Factor