Frameless multimodal image guidance of localized convection-enhanced delivery of therapeutics in the brain

Department of Radiology, University of Massachusetts, Worcester, Massachusetts, USA.
Journal of Neurointerventional Surgery (Impact Factor: 2.77). 12/2011; 5(1). DOI: 10.1136/neurintsurg-2011-010170
Source: PubMed


Convection-enhanced delivery (CED) has been shown to be an effective method of administering macromolecular compounds into the brain that are unable to cross the blood-brain barrier. Because the administration is highly localized, accurate cannula placement by minimally invasive surgery is an important requisite. This paper reports on the use of an angiographic c-arm system which enables truly frameless multimodal image guidance during CED surgery.

A microcannula was placed into the striatum of five sheep under real-time fluoroscopic guidance using imaging data previously acquired by cone beam computed tomography (CBCT) and MRI, enabling three-dimensional navigation. After introduction of the cannula, high resolution CBCT was performed and registered with MRI to confirm the position of the cannula tip and to make adjustments as necessary. Adeno-associated viral vector-10, designed to deliver small-hairpin micro RNA (shRNAmir), was mixed with 2.0 mM gadolinium (Gd) and infused at a rate of 3 μl/min for a total of 100 μl. Upon completion, the animals were transferred to an MR scanner to assess the approximate distribution by measuring the volume of spread of Gd.

The cannula was successfully introduced under multimodal image guidance. High resolution CBCT enabled validation of the cannula position and Gd-enhanced MRI after CED confirmed localized administration of the therapy.

A microcannula for CED was introduced into the striatum of five sheep under multimodal image guidance. The non-alloy 300 μm diameter cannula tip was well visualized using CBCT, enabling confirmation of the position of the end of the tip in the area of interest.

Download full-text


Available from: Matthew J Gounis, Feb 28, 2014
  • Source
    • "In our studies in sheep, image-guided cannulae placement provides real-time visual feedback. We derive a multi-modal image-guidance system that is accurate and precise [9] [10] and use this technique to deliver AAV in the striatum of 28 sheep. Immediately prior to convection enhanced delivery, MRI data is acquired in order to provide brain anatomy in high detail (Fig. 1A). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Our goal is delivery of a long-term treatment for Huntington's disease. We administer intracerebrally in sheep adeno-associated virus (AAV) to establish optimal safety, spread and neuronal uptake of AAV based therapeutics. Sheep have large gyrencephalic brains and offer the opportunity to study a transgenic Huntington's disease model. However, lack of a relevant brain stereotactic atlas and the difficulty of skull fixation make conventional stereotaxy unreliable. We describe a multi-modal image-guidance technique to achieve accurate placement of therapeutics into the sheep striatum.
    Journal of Huntington's disease 01/2013; 2(1):41-45. DOI:10.3233/JHD-130053
  • [Show abstract] [Hide abstract]
    ABSTRACT: Three years following endovascular embolization of a 3 mm ruptured arteriovenous malformation (AVM) of the left superior colliculus in a 42-year-old man, digital subtraction angiography showed continuous regrowth of the lesion. Thin-slice MRI acquired for treatment planning did not show the AVM nidus. The patient was brought back to the angiography suite for high-resolution contrast-enhanced cone beam CT (VasoCT) acquired using an angiographic c-arm system. The lesion and nidus were visualized with VasoCT. MRI, CT and VasoCT data were transferred to radiation planning software and mutually co-registered. The nidus was annotated for radiation on VasoCT data by an experienced neurointerventional radiologist and a dose/treatment plan was completed. Due to image registration, the treatment area could be directly adopted into the MRI and CT data. The AVM was completely obliterated 10 months following completion of the radiosurgery treatment.
    Case Reports 05/2013; 2013(5). DOI:10.1136/bcr-2013-010763
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Intracranial in-stent hyperplasia is a stroke-associated complication that requires routine surveillance. To compare the results of in vivo experiments to determine the accuracy and precision of in-stent hyperplasia measurements obtained with modified C-arm contrast-enhanced, cone-beam CT (CE-CBCT) imaging with those obtained by 'gold standard' histomorphometry. Additionally, to carry out clinical analyses comparing this CE-CBCT protocol with digital subtraction angiography (DSA). A non-binned CE-CBCT protocol (VasoCT) was used that acquires x-ray images with a small field-of-view and applies a full-scale reconstruction algorithm providing high-resolution three-dimensional (3D) imaging with 100 µm isotropic voxels. In an vivo porcine model, VasoCT cross-sectional area measurements were compared with gold standard vessel histology. VasoCT and DSA were used to calculate in-stent stenosis in 23 imaging studies. Porcine VasoCT cross-sectional stent, lumen, and in-stent hyperplasia areas strongly correlated with histological measurements (r(2)=0.97, 0.93, 0.90; slope=1.14, 1.07, and 0.76, respectively; p<0.0001). Clinical VasoCT percentage stenosis correlated well with DSA percentage stenosis (r(2)=0.84; slope=0.76), and the two techniques were free of consistent bias (Bland-Altman, bias=3.29%; 95% CI -14.75% to 21.33%). An illustrative clinical case demonstrated the advantages of VasoCT, including 3D capability and non-invasive IV contrast administration, for detection of in-stent hyperplasia. C-arm VasoCT is a high-resolution 3D capable imaging technique that has been validated in an animal model for measurement of in-stent tissue growth. Successful clinical implementation of the protocol was performed in a small case series.
    Journal of Neurointerventional Surgery 01/2014; 7(2). DOI:10.1136/neurintsurg-2013-010950 · 2.77 Impact Factor
Show more