Cholesterol dependence of Newcastle Disease Virus entry

Departamento de Bioquimica, Universidad de Salamanca, Salamanca, Spain.
Biochimica et Biophysica Acta (Impact Factor: 4.66). 12/2011; 1818(3):753-61. DOI: 10.1016/j.bbamem.2011.12.004
Source: PubMed

ABSTRACT Lipid rafts are membrane microdomains enriched in cholesterol, sphingolipids, and glycolipids that have been implicated in many biological processes. Since cholesterol is known to play a key role in the entry of some other viruses, we investigated the role of cholesterol and lipid rafts in the host cell plasma membrane in Newcastle Disease Virus (NDV) entry. We used methyl-β-cyclodextrin (MβCD) to deplete cellular cholesterol and disrupt lipid rafts. Our results show that the removal of cellular cholesterol partially reduces viral binding, fusion and infectivity. MβCD had no effect on the expression of sialic acid containing molecule expression, the NDV receptors in the target cell. All the above-described effects were reversed by restoring cholesterol levels in the target cell membrane. The HN viral attachment protein partially localized to detergent-resistant membrane microdomains (DRMs) at 4°C and then shifted to detergent-soluble fractions at 37°C. These results indicate that cellular cholesterol may be required for optimal cell entry in NDV infection cycle.

Download full-text


Available from: Isabel Muñoz-Barroso, Sep 27, 2015
31 Reads
  • Source
    • "Therefore, some viruses are potentially contained within small invaginations in the plasma membranes of host cell that form the caveosome, which delivers virus particles to early endosomes (Figure 3) within the infected cells [66]. Cantín et al. [64] described the colocalization of NDV with caveolin and with the early endosome marker EEA1, leading to the suggestion that a certain percentage of the virus manages to penetrate the cell through caveolin-dependent endocytic pathways [67]. In that particular study, after 30 minutes of NDV infection, a strong colocalization of NDV HN protein and EEA1 was found, thus confirming that HN is targeted to early endosomes. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Glioblastoma multiforme (GBM), or grade IV glioma, is one of the most lethal forms of human brain cancer. Current bioscience has begun to depict more clearly the signalling pathways that are responsible for high-grade glioma initiation, migration, and invasion, opening the door for molecular-based targeted therapy. As such, the application of viruses such as Newcastle disease virus (NDV) as a novel biological bullet to specifically target aberrant signalling in GBM has brought new hope. The abnormal proliferation and aggressive invasion behaviour of GBM is reported to be associated with aberrant Rac1 protein signalling. NDV interacts with Rac1 upon viral entry, syncytium induction, and actin reorganization of the infected cell as part of the replication process. Ultimately, intracellular stress leads the infected glioma cell to undergo cell death. In this review, we describe the characteristics of malignant glioma and the aberrant genetics that drive its aggressive phenotype, and we focus on the use of oncolytic NDV in GBM-targeted therapy and the interaction of NDV in GBM signalling that leads to inhibition of GBM proliferation and invasion, and subsequently, cell death.
    BioMed Research International 08/2014; 2014:386470. DOI:10.1155/2014/386470 · 2.71 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Receptor recognition and binding is the first step in the viral cycle. It has been established that Newcastle Disease Virus (NDV) interacts with sialylated molecules such as gangliosides and glycoproteins at the cell surface. Nevertheless, the specific receptor(s) that mediate virus entry are not well known. We have analysed the role of the sialic acid linkage in the early steps of the viral infection cycle. Pretreatment of ELL-0 cells with both α2,3 and α2,6 specific sialidases led to the inhibition of NDV binding, fusion and infectivity, which were restored after α2,3(N)- and α2,6(N)-sialyltransferase incubation. Moreover, α2,6(N)-sialyltransferases also restored NDV activities in α2-6-linked sialic acid deficient cells. Competition with α2-6 sialic acid-binding lectins led to a reduction in the three NDV activities (binding, fusion and infectivity) suggesting a role for α2-6- linked sialic acid in NDV entry. We conclude that both α2-3- and α2-6- linked sialic acid containing glycoconjugates may be used for NDV infection. NDV was able to efficiently bind, fuse and infect the ganglioside-deficient cell line GM95 to a similar extent to that of its parental MEB4, suggesting that gangliosides are not essential for NDV binding, fusion and infectivity. Nevertheless, the fact that the interaction of NDV with cells deficient in N-glycoprotein expression such as Lec1 was less efficient prompted us to conclude that NDV requires N-linked glycoproteins for efficient attachment and entry into the host cell.
    Glycoconjugate Journal 08/2012; 29(7):539-49. DOI:10.1007/s10719-012-9431-0 · 2.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Newcastle disease (ND) is a contagious disease of birds that can have severe economic consequences for poultry producers, including a serious impact on the international trade of poultry and eggs. Newcastle disease virus (NDV) isolates are also called avian paramyxovirus serotype-1 isolates, but only infection with virulent NDV (vNDV) causes the disease. Virulent Newcastle disease virus (vNDV) isolates are distributed worldwide and have a high capacity to mutate, allowing the development of multiple vNDV genotypes evolving simultaneously at different locations. Large gaps in existing knowledge in the areas of epidemiology and evolution limit the possibilities to control the disease. Recurrent infection of poultry and wild birds allows the maintenance of a reservoir for the viruses; however, the role of wild birds and poultry in vNDV evolution is largely unknown. In the area of diagnostics, the performance of fast and accurate diagnostics methods is often affected by the evolution of viral genomes. Therefore, there is a need for the validation of multiple recently developed experimental tests and a need to develop additional fast and inexpensive diagnostic tests to be used in the field. In the area of vaccination, the development of inexpensive thermostable NDV vaccines and the development of vaccines capable of preventing viral replication are the highest priorities for endemic countries. In countries considered free of vNDV the development of low- cost vaccines that produce minimal vaccine reactions to prevent decreased productivity are higher priorities. Worldwide, better strategies that replace the culling of infected birds are needed to control outbreaks. Copyright © 2013 by the International Alliance for Biological Standardization (IABS), Carouge-Geneva (Switzerland).
    Developments in biologicals 05/2013; 135:95-106. DOI:10.1159/000178459
Show more