Blazhko RR Lyrae light curves as modulated signals

Monthly Notices of the Royal Astronomical Society (Impact Factor: 5.23). 06/2011; 417(2). DOI: 10.1111/j.1365-2966.2011.19313.x
Source: arXiv

ABSTRACT We present an analytical formalism for the description of Blazhko RR Lyrae
light curves in which employ a treatment for the amplitude and frequency
modulations in a manner similar to the theory of electronic signal
transmitting. We assume monoperiodic RR Lyrae light curves as carrier waves and
modulate their amplitude (AM), frequency (FM), phase (PM), and as a general
case we discuss simultaneous AM and FM. The main advantages of this handling
are the following: (i) The mathematical formalism naturally explains numerous
light curve characteristics found in Blazhko RR Lyrae stars such as mean
brightness variations, complicated envelope curves, non-sinusoidal frequency
variations. (ii) Our description also explains properties of the Fourier
spectra such as apparent higher-order multiplets, amplitude distribution of the
side peaks, the appearance of the modulation frequency itself and its
harmonics. In addition, comparing to the traditional method, our light curve
solutions reduce the number of necessary parameters. This formalism can be
applied to any type of modulated light curves, not just for Blazhko RR Lyrae

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Learned et. al. proposed that a sufficiently advanced extra-terrestrial civilization may tickle Cepheid and RR Lyrae variable stars with a neutrino beam at the right time, thus causing them to trigger early and jogging the otherwise very regular phase of their expansion and contraction. This would turn these stars into beacons to transmit information throughout the galaxy and beyond. The idea is to search for signs of phase modulation (in the regime of short pulse duration) and patterns, which could be indicative of intentional, omnidirectional signaling. We have performed such a search among variable stars using photometric data from the Kepler space telescope. In the RRc Lyrae star KIC 5520878, we have found two such regimes of long and short pulse durations. The sequence of period lengths, expressed as time series data, is strongly auto correlated, with correlation coefficients of prime numbers being significantly higher ($p=99.8$\%). Our analysis of this candidate star shows that the prime number oddity originates from two simultaneous pulsation periods and is likely of natural origin. Simple physical models elucidate the frequency content and asymmetries of the KIC 5520878 light curve. Despite this SETI null result, we encourage testing other archival and future time-series photometry for signs of modulated stars. This can be done as a by-product to the standard analysis, and even partly automated.
    The Astrophysical Journal 09/2014; 798(1). DOI:10.1088/0004-637X/798/1/42 · 6.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In order to benefit from the 4-year unprecedented precision of the Kepler data, we extracted light curves from the pixel photometric data of the Kepler space telescope for 15 Blazhko RR Lyrae stars. For collecting all the flux from a given target as accurately as possible, we defined tailor-made apertures for each star and quarter. In some cases the aperture finding process yielded sub-optimal result, because some flux have been lost even if the aperture contains all available pixels around the star. This fact stresses the importance of those methods that rely on the whole light curve instead of focusing on the extrema (O-C diagrams and other amplitude independent methods). We carried out detailed Fourier analysis of the light curves and the amplitude independent O-C diagram. We found 12 (80%) multiperiodically modulated stars in our sample. This ratio is much higher than previously found. Resonant coupling between radial modes, a recent theory to explain of the Blazhko effect, allows single, multiperiodic or even chaotic modulations. Among the stars with two modulations we found three stars (V355 Lyr, V366 Lyr and V450 Lyr) where one of the periods dominate in amplitude modulation, but the other period has larger frequency modulation amplitude. The ratio between the primary and secondary modulation periods is almost always very close to ratios of small integer numbers. It may indicate the effect of undiscovered resonances. Furthermore, we detected the excitation of the second radial overtone mode $f_2$ for three stars where this feature was formerly unknown. Our data set comprises the longest continuous, most precise observations of Blazhko RR Lyrae stars ever published. These data which is made publicly available will be unprecedented for years to come.
    The Astrophysical Journal Supplement Series 06/2014; 213(2). DOI:10.1088/0067-0049/213/2/31 · 14.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We search for signs of period doubling in CoRoT RR Lyrae stars. The occurrence of this dynamical effect in modulated RR Lyrae stars might help us to gain more information about the mysterious Blazhko effect. The temporal variability of the additional frequencies in representatives of all subtypes of RR Lyrae stars is also investigated. We pre-process CoRoT light curves by applying trend and jump correction and outlier removal. Standard Fourier technique is used to analyze the frequency content of our targets and follow the time dependent phenomena. The most comprehensive collection of CoRoT RR Lyrae stars, including new discoveries is presented and analyzed. We found alternating maxima and in some cases half-integer frequencies in four CoRoT Blazhko RR Lyrae stars, as clear signs of the presence of period doubling. This reinforces that period doubling is an important ingredient to understand the Blazhko effect - a premise we derived previously from the Kepler RR Lyrae sample. As expected, period doubling is detectable only for short time intervals in most modulated RRab stars. Our results show that the temporal variability of the additional frequencies in all RR Lyrae sub-types is ubiquitous. The ephemeral nature and the highly variable amplitude of these variations suggest a complex underlying dynamics of and an intricate interplay between radial and possibly nonradial modes in RR Lyrae stars. The omnipresence of additional modes in all types of RR Lyrae - except in non-modulated RRab stars - implies that asteroseismology of these objects should be feasible in the near future (Abridged).
    Astronomy and Astrophysics 08/2014; 570. DOI:10.1051/0004-6361/201424522 · 4.48 Impact Factor

Full-text (2 Sources)

Available from
May 30, 2014