A high-throughput scintillation proximity-based assay for human DNA ligase IV.

Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10583, USA.
Assay and Drug Development Technologies (Impact Factor: 2.08). 12/2011; 10(3):235-49. DOI: 10.1089/adt.2011.0404
Source: PubMed

ABSTRACT Ionizing radiation (IR) and certain chemotherapeutic drugs are designed to generate cytotoxic DNA double-strand breaks (DSBs) in cancer cells. Inhibition of the major DSB repair pathway, nonhomologous end joining (NHEJ), will enhance the cytotoxicity of these agents. Screening for inhibitors of the DNA ligase IV (Lig4), which mediates the final ligation step in NHEJ, offers a novel target-based drug discovery opportunity. For this purpose, we have developed an enzymatic assay to identify chemicals that block the transfer of [α-(33)P]-AMP from the complex Lig4-[α-(33)P]-AMP onto the 5' end of a double-stranded DNA substrate and adapted it to a scintillation proximity assay (SPA). A screen was performed against a collection of 5,280 compounds. Assay statistics show an average Z' value of 0.73, indicative of a robust assay in this SPA format. Using a threshold of >20% inhibition, 10 compounds were initially scored as positive hits. A follow-up screen confirmed four compounds with IC(50) values ranging from 1 to 30 μM. Rabeprazole and U73122 were found to specifically block the adenylate transfer step and DNA rejoining; in whole live cell assays, these compounds were found to inhibit the repair of DSBs generated by IR. The ability to screen and identify Lig4 inhibitors suggests that they may have utility as chemo- and radio-sensitizers in combination therapy and provides a rationale for using this screening strategy to identify additional inhibitors.

  • [Show abstract] [Hide abstract]
    ABSTRACT: During DNA replication, DNA joining events link Okazaki fragments on the lagging strand. In addition, they are required to repair DNA single- and double-strand breaks and to complete repair events initiated by the excision of mismatched and damaged bases. In human cells, there are three genes encoding DNA ligases. These enzymes are ATP-dependent and contain a conserved catalytic region. Biophysical studies have shown that the catalytic region contains three domains that, in the absence of DNA, are in an extended conformation. When the catalytic region engages a DNA nick, it adopts a compact, ring structure around the DNA nick with each of the three domains contacting the DNA. Protein-protein interactions involving the regions flanking the conserved catalytic regions of human DNA ligases play a major role in directing these enzymes to participate in specific DNA transactions. Among the human LIG genes, the LIG3 gene is unique in that it encodes multiple DNA ligase polypeptides with different N- and C-termini. One of these polypeptides is targeted to mitochondria where it plays an essential role in the maintenance of the mitochondrial genome. In the nucleus, DNA ligases I, III and IV have distinct but overlapping functions in DNA replication and repair. Small molecule inhibitors of human DNA ligases have been identified using structure-based approaches. As expected, these inhibitors are cytotoxic and also potentiate the cytotoxicity of DNA damaging agents. The results of preclinical studies with human cancer cell lines and mouse models of human cancer suggest that DNA ligase inhibitors may have utility as anti-cancer agents.
    Translational Cancer Research 06/2013; 2(3).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Notch pathway plays a crucial role in cell fate decisions through controlling various cellular processes. Overactive Notch signal contributes to cancer development from leukemias to solid tumor. γ-Secretase is an intramembrane protease responsible for the final proteolytic step of Notch that releases the membrane-tethered Notch fragment for signaling. Therefore, γ-Secretase is an attractive drug target in treating Notch-mediated cancers. However, the absence of high-throughput γ-Secretase assay using Notch substrate has limited the identification and development of γ-Secretase inhibitors that specifically target the Notch signaling pathway. Here, we report on the development of a 1536-well γ-Secretase assay using a biotinylated recombinant Notch1 substrate. We effectively assimilated and miniaturized this newly developed Notch1 substrate with the AlphaLISA detection technology and demonstrated its robustness with a calculated Z score of 0.66. We further validated this optimized assay by performing a pilot screening against a chemical library consisting of ~5,600 chemicals and identified known γ-secretase inhibitors e.g. DAPT, and Calpeptin; as well as a novel γ-secretase inhibitor referred to as KD-I-085. This assay is the first reported 1536-well AlphaLISA format and represents a novel high-throughput Notch1-γ-secretase assay, which provides an unprecedented opportunity to discover Notch-selective γ-secretase inhibitors that can be potentially used for the treatment of cancer and other human disorders.
    Combinatorial chemistry & high throughput screening 02/2013; · 2.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Radiation therapy is one of the mainstays of anti-cancer treatment, but the relationship between the radiosensitivity of cancer cells and their genomic characteristics is still not well-defined. Here we report the development of a high-throughput platform for measuring radiation survival in vitro and its validation by comparison to conventional clonogenic radiation survival analysis. We combined results from this high-throughput assay with genomic parameters in cell lines from squamous cell lung carcinoma, which is standardly treated by radiation therapy, to identify parameters that predict radiation sensitivity. We showed that activation of NFE2L2, a frequent event in lung squamous cancers, confers radiation resistance. An expression-based, in silico screen nominated inhibitors of PI3K as NFE2L2 antagonists. We showed that the selective PI3K inhibitor, NVP-BKM120, both decreased NRF2 protein levels and sensitized NFE2L2 or KEAP1 mutant cells to radiation. We then combined results from this high-throughput assay with single-sample gene set enrichment analysis (ssGSEA) of gene expression data. The resulting analysis identified pathways implicated in cell survival, genotoxic stress, detoxification, and innate and adaptive immunity as key correlates of radiation sensitivity. The integrative, high-throughput methods shown here for large-scale profiling of radiation survival and genomic features of solid-tumor derived cell lines should facilitate tumor radiogenomics and the discovery of genotype-selective radiation sensitizers and protective agents.
    Cancer Research 08/2013; · 9.28 Impact Factor

Full-text (2 Sources)

Available from
May 28, 2014