Article

Draft consensus guidelines for diagnosis and treatment of Shwachman-Diamond syndrome

The Hospital For Sick Children, University of Toronto, Ontario, Canada.
Annals of the New York Academy of Sciences (Impact Factor: 4.31). 12/2011; 1242(1):40-55. DOI: 10.1111/j.1749-6632.2011.06349.x
Source: PubMed

ABSTRACT Shwachman-Diamond syndrome (SDS) is an autosomal recessive disorder characterized by pancreatic exocrine insufficiency and bone marrow failure, often associated with neurodevelopmental and skeletal abnormalities. Mutations in the SBDS gene have been shown to cause SDS. The purpose of this document is to provide draft guidelines for diagnosis, evaluation of organ and system abnormalities, and treatment of hematologic, pancreatic, dietary, dental, skeletal, and neurodevelopmental complications. New recommendations regarding diagnosis and management are presented, reflecting advances in understanding the genetic basis and clinical manifestations of the disease based on the consensus of experienced clinicians from Canada, Europe, and the United States. Whenever possible, evidence-based conclusions are made, but as with other rare diseases, the data on SDS are often anecdotal. The authors welcome comments from readers.

Download full-text

Full-text

Available from: Elizabeth N Kerr, Jun 28, 2015
0 Followers
 · 
172 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Patients with the Shwachman-Diamond syndrome often develop hematologic complications. No risk factors for these complications have so far been identified. The aim of this study was to classify the hematologic complications occurring in patients with Shwachman-Diamond syndrome and to investigate the risk factors for these complications. DESIGN AND METHODS: One hundred and two patients with Shwachman-Diamond syndrome, with a median follow-up of 11.6 years, were studied. Major hematologic complications were considered in the case of definitive severe cytopenia (i.e. anemia <7 g/dL or thrombocytopenia <20×10(9)/L), classified as malignant (myelodysplasia/leukemia) according to the 2008 World Health Organization classification or as non-malignant. RESULTS: Severe cytopenia was observed in 21 patients and classified as malignant severe cytopenia (n=9), non-malignant severe cytopenia (n=9) and malignant severe cytopenia preceded by non-malignant severe cytopenia (n=3). The 20-year cumulative risk of severe cytopenia was 24.3% (95% confidence interval: 15.3%-38.5%). Young age at first symptoms (<3 months) and low hematologic parameters both at diagnosis of the disease and during the follow-up were associated with severe hematologic complications (P<0.001). Fifteen novel SBDS mutations were identified. Genotype analysis showed no discernible prognostic value. Conclusions Patients with Shwachman-Diamond syndrome with very early symptoms or cytopenia at diagnosis (even mild anemia or thrombocytopenia) should be considered at a high risk of severe hematologic complications, malignant or non-malignant. Transient severe cytopenia or an indolent cytogenetic clone had no deleterious value.
    Haematologica 04/2012; 97(9):1312-1319. DOI:10.3324/haematol.2011.057489 · 5.87 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Shwachman-Diamond syndrome (SDS) is the second leading cause of hereditary exocrine pancreatic dysfunction. More than 90% of patients with SDS have biallelic loss-of-function mutations in the Shwachman-Bodian Diamond syndrome (SBDS) gene, which encodes a factor involved in ribosome function. We investigated whether mutations in Sbds lead to similar pancreatic defects in mice. Pancreas-specific knock-out mice were generated using a floxed Sbds allele and bred with mice carrying a null or disease-associated missense Sbds allele. Cre recombinase, regulated by the pancreatic transcription factor 1a promoter, was used to disrupt Sbds specifically in the pancreas. Models were assessed for pancreatic dysfunction and growth impairment. Disruption of Sbds in the mouse pancreas was sufficient to recapitulate SDS phenotypes. Pancreata of mice with Sbds mutations had decreased mass, fat infiltration, but general preservation of ductal and endocrine compartments. Pancreatic extracts from mutant mice had defects in formation of the 80S ribosomal complex. The exocrine compartment of mutant mice was hypoplastic and individual acini produced few zymogen granules. The null Sbds allele resulted in an earlier onset of phenotypes as well as endocrine impairment. Mutant mice had reduced serum levels of digestive enzymes and overall growth impairment. We developed a mouse model of SDS with pancreatic phenotypes similar to those of the human disease. This model could be used to investigate organ-specific consequences of Sbds-associated ribosomopathy. Sbds genotypes correlated with phenotypes. Defects developed specifically in the pancreata of mice, reducing growth of mice and production of digestive enzymes. SBDS therefore appears to be required for normal pancreatic development and function.
    Gastroenterology 04/2012; 143(2):481-92. DOI:10.1053/j.gastro.2012.04.012 · 13.93 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: As with most genetic cancer predisposition syndromes, inherited susceptibility to myelodysplastic syndrome (MDS) and acute leukemia (AL) is likely to be more common than previously appreciated. As next-generation sequencing technologies become integrated into clinical practice, we anticipate that the number of cases of familial MDS/AL identified will increase. Although the existence of syndromes predisposing to MDS/AL has been known for some time, clinical guidelines for the screening and management of suspected or confirmed cases do not exist. Based on our collective experience caring for families with these syndromes, we propose recommendations for genetic counseling, testing, and clinical management. We welcome discussion about these proposals and hope that they will catalyze an ongoing dialog leading to optimal medical and psychosocial care for these patients.
    Leukemia & lymphoma 06/2012; 54(1). DOI:10.3109/10428194.2012.701738 · 2.61 Impact Factor