Article

The transcriptional coactivator TAZ regulates mesenchymal differentiation in malignant glioma.

Department of Pathology, The University of Texas, M.D. Anderson Cancer Center, Houston, Texas 77030, USA.
Genes & development (Impact Factor: 12.08). 12/2011; 25(24):2594-609. DOI: 10.1101/gad.176800.111
Source: PubMed

ABSTRACT Recent molecular classification of glioblastoma (GBM) has shown that patients with a mesenchymal (MES) gene expression signature exhibit poor overall survival and treatment resistance. Using regulatory network analysis of available expression microarray data sets of GBM, including The Cancer Genome Atlas (TCGA), we identified the transcriptional coactivator with PDZ-binding motif (TAZ), to be highly associated with the MES network. TAZ expression was lower in proneural (PN) GBMs and lower-grade gliomas, which correlated with CpG island hypermethylation of the TAZ promoter compared with MES GBMs. Silencing of TAZ in MES glioma stem cells (GSCs) decreased expression of MES markers, invasion, self-renewal, and tumor formation. Conversely, overexpression of TAZ in PN GSCs as well as murine neural stem cells (NSCs) induced MES marker expression and aberrant osteoblastic and chondrocytic differentiation in a TEAD-dependent fashion. Using chromatin immunoprecipitation (ChIP), we show that TAZ is directly recruited to a majority of MES gene promoters in a complex with TEAD2. The coexpression of TAZ, but not a mutated form of TAZ that lacks TEAD binding, with platelet-derived growth factor-B (PDGF-B) resulted in high-grade tumors with MES features in a murine model of glioma. Our studies uncover a direct role for TAZ and TEAD in driving the MES differentiation of malignant glioma.

0 Bookmarks
 · 
224 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Primary brain tumours (gliomas) initiate a strong host response and can contain large amounts of immune cells (myeloid cells) such as microglia and tumour-infiltrating macrophages. In gliomas the course of pathology is not only controlled by the genetic make-up of the tumour cells, but also depends on the interplay with myeloid cells in the tumour microenvironment. Especially malignant gliomas such as glioblastoma multiforme (GBM) are notoriously immune-suppressive and it is now evident that GBM cells manipulate myeloid cells to support tumour expansion. The protumorigenic effects of glioma-associated myeloid cells comprise a support for angiogenesis as well as tumour cell invasion, proliferation and survival. Different strategies for inhibiting the pathological functions of myeloid cells in gliomas are explored, and blocking the tropism of microglia/macrophages to gliomas or manipulating the signal transduction pathways for immune cell activation has been successful in pre-clinical models. Hence, myeloid cells are now emerging as a promising target for new adjuvant therapies for gliomas. However, it is also becoming evident that some myeloid-directed glioma therapies may only be beneficial for distinct subclasses of gliomas and that a more cell-type-specific manipulation of either microglia or macrophages may improve therapeutic outcomes.
    Acta Neuropathologica 04/2014; · 9.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Glioblastoma (GBM) stem cells (GSCs), responsible for tumor growth, recurrence, and resistance to therapies, are considered the real therapeutic target, if they had no molecular mechanisms of resistance, in comparison with the mass of more differentiated cells which are insensitive to therapies just because of being differentiated and nonproliferating. GSCs occur in tumor niches where both stemness status and angiogenesis are conditioned by the microenvironment. In both perivascular and perinecrotic niches, hypoxia plays a fundamental role. Fifteen glioblastomas have been studied by immunohistochemistry and immunofluorescence for stemness and differentiation antigens. It has been found that circumscribed necroses develop inside hyperproliferating areas that are characterized by high expression of stemness antigens. Necrosis developed inside them because of the imbalance between the proliferation of tumor cells and endothelial cells; it reduces the number of GSCs to a thin ring around the former hyperproliferating area. The perinecrotic GSCs are nothing else that the survivors remnants of those populating hyperproliferating areas. In the tumor, GSCs coincide with malignant areas so that the need to detect where they are located is not so urgent.
    BioMed research international. 01/2014; 2014:725921.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Purpose. Yes-associated protein (YAP) and PDZ-binding motif (TAZ) are two important effectors of Hippo pathway controlling the balance of organ size and carcinogenesis. Amphiregulin (AREG) is a member of the epidermal growth factor family, a direct target gene of YAP and TAZ. The role of these proteins in hepatocellular carcinoma (HCC) is unclear. Methods. The expression of YAP, TAZ, and AREG in HCC was analyzed by immunohistochemical staining. The level of secreted serum AREG was also assayed by enzyme-linked immunosorbent (ELISA) assay. Results. YAP, TAZ, and AREG were expressed in 69.2% (27/39), 66.7% (26/39), and 61.5% (24/39) of HCC patients. The expression of YAP was significantly correlated with Edmondson stage (P > 0.05), serum AFP level (P > 0.05), and HCC prognosis (P > 0.05). AREG expression was also significantly correlated with Edmondson stage (P > 0.05) and serum AFP level (P > 0.05). In addition, the expression of serum AREG was higher than serum AFP in HCC patients. Further multivariate analysis showed that YAP expression was an independent prognostic factor that significantly affected the overall survival of HCC patients. Conclusions. YAP maybe an independent prognostic indicator for HCC patients and serum AREG may be a serological biomarker of HCC.
    Research Journal of Immunology 01/2014; 2014:261365.

Full-text (2 Sources)

Download
50 Downloads
Available from
Jun 2, 2014