A surface-based mass spectrometry method for screening glycosidase specificity in environmental samples

Biofunctional Nanomaterials Department, CICbiomaGUNE, Paseo Miramon 182, 20009 San Sebastian, Spain.
Chemical Communications (Impact Factor: 6.83). 12/2011; 48(11):1701-3. DOI: 10.1039/c2cc16537f
Source: PubMed


A new surface-based MALDI-Tof-MS glycosyl hydrolase assay has been developed in which lipid-tagged oligosaccharides, representing defined fragments of major plant cell wall polysaccharides, are immobilized via hydrophobic interactions on an alkylthiol functionalised gold sample plate and employed in the functional screening of several purified enzymes, environmental samples and saliva.

Download full-text


Available from: Ana Beloqui, Nov 05, 2015
7 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: This review is the seventh update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2012. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, and fragmentation are covered in the first part of the review and applications to various structural types constitute the remainder. The main groups of compound are oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2015 Wiley Periodicals, Inc. Mass Spec Rev. © 2015 Wiley Periodicals, Inc.
    Mass Spectrometry Reviews 03/2012; 31(2):183-311. DOI:10.1002/mas.20333 · 7.71 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the last decade, carbohydrate microarrays have been core technologies for analyzing carbohydrate-mediated recognition events in a high-throughput fashion. A number of methods have been exploited for immobilizing glycans on the solid surface in a microarray format. This microarray-based technology has been widely employed for rapid analysis of the glycan binding properties of lectins and antibodies, the quantitative measurements of glycan-protein interactions, detection of cells and pathogens, identification of disease-related anti-glycan antibodies for diagnosis, and fast assessment of substrate specificities of glycosyltransferases. This review covers the construction of carbohydrate microarrays, detection methods of carbohydrate microarrays and their applications in biological and biomedical research.
    Chemical Society Reviews 11/2012; 42(10). DOI:10.1039/c2cs35401b · 33.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This review gives an overview of enzymatic reactions that have been conducted on substrates attached to solid surfaces. Such biochemical reactions have become more important with the drive to miniaturisation and automation in chemistry, biology and medicine. Technical aspects such as choice of solid surface and analytical methods are discussed and examples of enzyme reactions that have been successful on these surfaces are provided.
    Chemical Society Reviews 04/2013; 42(15). DOI:10.1039/c3cs60018a · 33.38 Impact Factor
Show more