Article

Roles of interleukin 17 in angiotensin II type 1 receptor-mediated insulin resistance.

Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Shitsukawa, Tohon, Ehime 791-0295, Japan.
Hypertension (Impact Factor: 7.63). 12/2011; 59(2):493-9. DOI: 10.1161/HYPERTENSIONAHA.111.183178
Source: PubMed

ABSTRACT Interleukin 17 (IL-17) is known to contribute to the pathogenesis of hypertension, atherosclerosis, and adipocyte differentiation; however, the roles of IL-17 in glucose metabolism remain to be elucidated. Angiotensin II type 1 receptor blockers improve insulin resistance at least in part because of the amelioration of inflammation. Therefore, we examined the possible roles of IL-17 in the pathogenesis of insulin resistance in type 2 diabetes mellitus using a mouse model, KK-Ay, and angiotensin II type 1 receptor-mediated insulin resistance. KK-Ay mice were administered control-IgG(2A) or anti-IL-17 antibody 5 times at a dose of 100 μg every second day by IP injection. KK-Ay mice were administered telmisartan for 2 weeks. C57BL/6J mice treated with angiotensin II infusion for 2 weeks were administered telmisartan or hydralazine. Insulin resistance was evaluated by oral glucose tolerance test, insulin tolerance test, and uptake of 2-[(3)H]deoxy-d-glucose in peripheral tissues. Serum IL-17 concentration in KK-Ay mice was significantly higher than that in C57BL/6J mice. Treatment of KK-Ay mice with anti-IL-17 antibody significantly increased 2-[(3)H]deoxy-d-glucose uptake in skeletal muscle but not in white adipose tissue and attenuated the increase in blood glucose level after a glucose load. Blockade of IL-17 enhanced the expression of adipocyte differentiation markers and adiponectin. Treatment with telmisartan decreased serum IL-17 concentration in KK-Ay and ameliorated angiotensin II-induced insulin resistance with a decrease in serum IL-17 level in C57BL/6J. In conclusion, IL-17 could play an important role in the pathogenesis of angiotensin II type 1 receptor-induced insulin resistance.

0 Bookmarks
 · 
125 Views
  • Hypertension 05/2013; 61(5):943-7. · 7.63 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Diabetes-induced testicular cell death is predominantly due to oxidative stress. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is an important transcription factor in controlling the anti-oxidative system and is inducible by sulforaphane (SFN). To test whether SFN prevents diabetes-induced testicular cell death, an insulin-defective stage of type 2 diabetes (IDS-T2DM) was induced in mice. This was accomplished by feeding them a high-fat diet (HFD) for 3 months to induce insulin resistance, and then giving one intraperitoneal injection of streptozotocin to induce hyperglycemia while age-matched control mice were fed a normal diet (ND). IDS-T2DM and ND-fed control mice were then further subdivided into those with or without 4-month SFN treatment. IDS-T2DM induced significant increases in testicular cell death presumably through receptor and mitochondrial pathways, shown by increased ratio of Bax/Bcl2 expression and cleavage of caspase-3 and caspase-8 without significant change of endoplasmic reticulum stress. Diabetes also significantly increased testicular oxidative damage and inflammation. All these diabetic effects were significantly prevented by SFN treatment with up-regulated Nrf2 expression. These results suggest that IDS-T2DM induces testicular cell death presumably through caspase-8 activation and mitochondria-mediated cell death pathways, and also by significantly down-regulating testicular Nrf2 expression and function. SFN up-regulates testicular Nrf2 expression, and its target antioxidant expression, which was associated with significant protection of the testis from IDS-T2DM-induced germ cell death.
    AJP Endocrinology and Metabolism 05/2014; · 4.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The immune system is composed of many different cell types and hundreds of intersecting molecular pathways and signals. This large biological complexity requires coordination between distinct pro-inflammatory and regulatory cell subsets to respond to infection while maintaining tissue homeostasis. CD4+ T cells play a central role in orchestrating immune responses and in maintaining a balance between pro- and anti- inflammatory responses. This tight balance between regulatory and effector reactions depends on the ability of CD4+ T cells to modulate distinct pathways within large molecular networks, since dysregulated CD4+ T cell responses may result in chronic inflammatory and autoimmune diseases. The CD4+ T cell differentiation process comprises an intricate interplay between cytokines, their receptors, adaptor molecules, signaling cascades and transcription factors that help delineate cell fate and function. Computational modeling can help to describe, simulate, analyze, and predict some of the behaviors in this complicated differentiation network. This review provides a comprehensive overview of existing computational immunology methods as well as novel strategies used to model immune responses with a particular focus on CD4+ T cell differentiation.
    Frontiers in Cell and Developmental Biology 07/2014; 2:31.