Article

p63 Regulates Human Keratinocyte Proliferation via MYC-regulated Gene Network and Differentiation Commitment through Cell Adhesion-related Gene Network

Commissariat à l'Energie Atomique, Biologie à Grande Echelle, F-38054 Grenoble, France.
Journal of Biological Chemistry (Impact Factor: 4.6). 12/2011; 287(8):5627-38. DOI: 10.1074/jbc.M111.328120
Source: PubMed

ABSTRACT Although p63 and MYC are important in the control of epidermal homeostasis, the underlying molecular mechanisms governing keratinocyte proliferation or differentiation downstream of these two genes are not completely understood. By analyzing the transcriptional changes and phenotypic consequences of the loss of either p63 or MYC in human developmentally mature keratinocytes, we have characterized the networks acting downstream of these two genes to control epidermal homeostasis. We show that p63 is required to maintain growth and to commit to differentiation by two distinct mechanisms. Knockdown of p63 led to down-regulation of MYC via the Wnt/β-catenin and Notch signaling pathways and in turn reduced keratinocyte proliferation. We demonstrate that a p63-controlled keratinocyte cell fate network is essential to induce the onset of keratinocyte differentiation. This network contains several secreted proteins involved in cell migration/adhesion, including fibronectin 1 (FN1), interleukin-1β (IL1B), cysteine-rich protein 61 (CYR61), and jagged-1 (JAG1), that act downstream of p63 as key effectors to trigger differentiation. Our results characterized for the first time a connection between p63 and MYC and a cell adhesion-related network that controls differentiation. Furthermore, we show that the balance between the MYC-controlled cell cycle progression network and the p63-controlled cell adhesion-related network could dictate skin cell fate.

0 Followers
 · 
118 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: PKD is a family of three serine/threonine kinases (PKD-1, -2 and -3) involved in the regulation of diverse biological processes including proliferation, migration, secretion and cell survival. We have previously shown that despite expression of all three isoforms in mouse epidermis, PKD1 plays a unique and critical role in wound healing, phorbol ester-induced hyperplasia and tumor development. In translating our findings to the human, we discovered that PKD1 is not expressed in human keratinocytes (KCs) and there is a divergence in the expression and function of other PKD isoforms. Contrary to mouse KCs, treatment of cultured human KCs with pharmacological inhibitors of PKDs resulted in growth arrest. We found that PKD2 and PKD3 are expressed differentially in proliferating and differentiating human KCs, with the former uniformly present in both compartments whereas the latter is predominantly expressed in the proliferating compartment. Knockdown of individual PKD isoforms in human KCs revealed contrasting growth regulatory roles for PKD2 and PKD3. Loss of PKD2 enhanced KC proliferative potential while loss of PKD3 resulted in a progressive proliferation defect, loss of clonogenicity and diminished tissue regenerative ability. This proliferation defect was correlated with upregulation of CDK4/6 inhibitor p15INK4B and induction of a p53-independent G1 cell cycle arrest. Simultaneous silencing of PKD isoforms resulted in a more pronounced proliferation defect consistent with a predominant role for PKD3 in proliferating KCs. These data underline the importance and complexity of PKD signaling in human epidermis and suggests a central role for PKD3 signaling in maintaining human epidermal homeostasis. Copyright © 2015, The American Society for Biochemistry and Molecular Biology.
    Journal of Biological Chemistry 03/2015; 290(17). DOI:10.1074/jbc.M115.643742 · 4.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The p53-related gene p63 is required for epithelial cell establishment and its expression is often altered in tumor cells. Great strides have been made in understanding the pathways and mechanisms that regulate p63 levels, such as the Wnt, Hedgehog, Notch, and EGFR pathways. We discuss here the multiple signaling pathways that control p63 expression as well as transcription factors and post-transcriptional mechanisms that regulate p63 levels. While a unified picture has not emerged, it is clear that the fine-tuning of p63 has evolved to carefully control epithelial cell differentiation and fate.
    Frontiers in Endocrinology 04/2015; 6. DOI:10.3389/fendo.2015.00051
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Transcription Factor (TF) p63 is a master regulator of epidermal development and differentiation as evident from the remarkable skin phenotype of p63 mouse knockouts. Furthermore, ectopic expression of p63 alone is sufficient to convert simple epithelium into stratified epithelial tissues in vivo and p63 is required for efficient transdifferentiation of fibroblasts into keratinocytes. However, little is known about the molecular mechanisms of p63 function, in particular how it selects its target sites in the genome. p63, which acts both as an activator and repressor of transcription, recognizes a canonical binding motif that occurs over 1 million times in the human genome. But, in human keratinocytes less than 12,000 of these sites are bound in vivo suggesting that underlying chromatin architecture and cooperating TFs mediate p63-genome interactions. We find that the chromatin architecture at p63-bound targets possess distinctive features and can be used to categorize p63 targets into proximal promoters (1%), enhancers (59%) and repressed or inactive (40%) regulatory elements. Our analysis shows that the chromatin modifications H3K4me1, H3K27me3, along with overall chromatin accessibility status can accurately predict bonafide p63-bound sites without a priori DNA sequence information. Interestingly, however there exists a qualitative correlation between the p63 binding motif and accessibility and H3K4me1 levels. Furthermore, we use a comprehensive in silico approach that leverages ENCODE data to identify several known TFs such as AP1, AP2 and novel TFs (RFX5 for e.g.) that can potentially cooperate with p63 to modulate its myriad biological functions in keratinocytes. Our analysis shows that p63 bound genomic locations in keratinocytes are accessible, marked by active histone modifications, and co-targeted by other developmentally important transcriptional regulators. Collectively, our results suggest that p63 might actively remodel and /or influence chromatin dynamics at its target sites and in the process dictate its own DNA binding and possibly that of adjacent TFs.
    BMC Genomics 11/2014; 15(1):1042. DOI:10.1186/1471-2164-15-1042 · 4.04 Impact Factor