Evolutionary trace for prediction and redesign of protein functional sites.

Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
Methods in molecular biology (Clifton, N.J.) (Impact Factor: 1.29). 01/2012; 819:29-42. DOI: 10.1007/978-1-61779-465-0_3
Source: PubMed

ABSTRACT The evolutionary trace (ET) is the single most validated approach to identify protein functional determinants and to target mutational analysis, protein engineering and drug design to the most relevant sites of a protein. It applies to the entire proteome; its predictions come with a reliability score; and its results typically reach significance in most protein families with 20 or more sequence homologs. In order to identify functional hot spots, ET scans a multiple sequence alignment for residue variations that correlate with major evolutionary divergences. In case studies this enables the selective separation, recoding, or mimicry of functional sites and, on a large scale, this enables specific function predictions based on motifs built from select ET-identified residues. ET is therefore an accurate, scalable and efficient method to identify the molecular determinants of protein function and to direct their rational perturbation for therapeutic purposes. Public ET servers are located at:

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mutations in the genes encoding cartilage associated protein (CRTAP) and prolyl 3-hydroxylase 1 (P3H1 encoded by LEPRE1) were the first identified causes of recessive Osteogenesis Imperfecta (OI). These proteins, together with cyclophilin B (encoded by PPIB), form a complex that 3-hydroxylates a single proline residue on the α1(I) chain (Pro986) and has cis/trans isomerase (PPIase) activity essential for proper collagen folding. Recent data suggest that prolyl 3-hydroxylation of Pro986 is not required for the structural stability of collagen; however, the absence of this post-translational modification may disrupt protein-protein interactions integral for proper collagen folding and lead to collagen over-modification. P3H1 and CRTAP stabilize each other and absence of one results in degradation of the other. Hence, hypomorphic or loss of function mutations of either gene cause loss of the whole complex and its associated functions. The relative contribution of losing this complex's 3-hydroxylation versus PPIase and collagen chaperone activities to the phenotype of recessive OI is unknown. To distinguish between these functions, we generated knock-in mice carrying a single amino acid substitution in the catalytic site of P3h1 (Lepre1(H662A) ). This substitution abolished P3h1 activity but retained ability to form a complex with Crtap and thus the collagen chaperone function. Knock-in mice showed absence of prolyl 3-hydroxylation at Pro986 of the α1(I) and α1(II) collagen chains but no significant over-modification at other collagen residues. They were normal in appearance, had no growth defects and normal cartilage growth plate histology but showed decreased trabecular bone mass. This new mouse model recapitulates elements of the bone phenotype of OI but not the cartilage and growth phenotypes caused by loss of the prolyl 3-hydroxylation complex. Our observations suggest differential tissue consequences due to selective inactivation of P3H1 hydroxylase activity versus complete ablation of the prolyl 3-hydroxylation complex.
    PLoS Genetics 01/2014; 10(1):e1004121. · 8.17 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Understanding the molecular basis of protein function remains a central goal of biology, with the hope to elucidate the role of human genes in health and in disease, and to rationally design therapies through targeted molecular perturbations. We review here some of the computational techniques and resources available for characterizing a critical aspect of protein function - those mediated by protein-protein interactions (PPI). We describe several applications and recent successes of the Evolutionary Trace (ET) in identifying molecular events and shapes that underlie protein function and specificity in both eukaryotes and prokaryotes. ET is a part of analytical approaches based on the successes and failures of evolution that enable the rational control of PPI.
    Progress in Biophysics and Molecular Biology 05/2014; · 3.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Co-variation between positions in a multiple sequence alignment may reflect structural, functional, and/or phylogenetic constraints and can be analyzed by a wide variety of methods. We explored several of these methods for their ability to identify co-varying positions related to the divergence of a protein family at different hierarchical levels. Specifically, we compared seven methods on a system model composed of three nested sets of G-protein-coupled receptors (GPCRs) in which a divergence event occurred. The co-variation methods analyzed were based on: χ2 test, mutual information, substitution matrices, and perturbation methods. We first analyzed the dependence of the co-variation scores on residue conservation (measured by sequence entropy), and then we analyzed the networking structure of the top pairs. Two methods out of seven—OMES (Observed minus Expected Squared) and ELSC (Explicit Likelihood of Subset Covariation)—favored pairs with intermediate entropy and a networking structure with a central residue involved in several high scoring pairs. This networking structure was observed for the three sequence sets. In each case, the central residue corresponded to a residue known to be crucial for the evolution of the GPCR family and the sub-family specificity. These central residues can be viewed as evolutionary hubs, in relation with an epistasis-based mechanism of functional divergence within a protein family. © Proteins 2014;. © 2014 Wiley Periodicals, Inc.
    Proteins Structure Function and Bioinformatics 03/2014; · 3.34 Impact Factor


Available from
May 30, 2014