Prolonged exposure to NMDAR antagonist induces cell-type specific changes of glutamatergic receptors in rat prefrontal cortex

Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA.
Neuropharmacology (Impact Factor: 5.11). 12/2011; 62(4):1808-22. DOI: 10.1016/j.neuropharm.2011.11.024
Source: PubMed


N-methyl-d-aspartic acid (NMDA) receptors are critical for both normal brain functions and the pathogenesis of schizophrenia. We investigated the functional changes of glutamatergic receptors in the pyramidal cells and fast-spiking (FS) interneurons in the adolescent rat prefrontal cortex in MK-801 model of schizophrenia. We found that although both pyramidal cells and FS interneurons were affected by in vivo subchronic blockade of NMDA receptors, MK-801 induced distinct changes in α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and NMDA receptors in the FS interneurons compared with pyramidal cells. Specifically, the amplitude, but not the frequency, of AMPA-mediated miniature excitatory postsynaptic currents (mEPSCs) in FS interneurons was significantly decreased whereas both the frequency and amplitude in pyramidal neurons were increased. In addition, MK-801-induced new presynaptic NMDA receptors were detected in the glutamatergic terminals targeting pyramidal neurons but not FS interneurons. MK-801 also induced distinct alterations in FS interneurons but not in pyramidal neurons, including significantly decreased rectification index and increased calcium permeability. These data suggest a distinct cell-type specific and homeostatic synaptic scaling and redistribution of AMPA and NMDA receptors in response to the subchronic blockade of NMDA receptors and thus provide a direct mechanistic explanation for the NMDA hypofunction hypothesis that have long been proposed for the schizophrenia pathophysiology.

Download full-text


Available from: Wen-Jun Gao,
    • "Repeated NMDAR antagonism in adult animals can induce changes in the membrane properties of cortical FS interneurons (Wang and Gao 2012). Therefore, we first examined the effects of developmental ketamine administration on basic membrane properties of FS neurons in layer 5 of the mPFC (Fig 4A). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Dysfunctions in the GABAergic system are considered a core feature of schizophrenia. Pharmacological blockade of NMDA receptors (NMDAR), or their genetic ablation in parvalbumin (PV)-expressing GABAergic interneurons can induce schizophrenia-like behavior in animals. NMDAR mediated currents shape the maturation of GABAergic interneurons during a critical period of development, making transient blockade of NMDARs during this period an attractive model for the developmental changes that occur in the course of schizophrenia's pathophysiology. Here, we examined whether developmental administration of the non-competitive NMDAR antagonist ketamine results in persistent deficits in PFC-dependent behaviors in adult animals. Mice received injections of ketamine (30mg/kg) on postnatal days (PND) 7, 9 and 11, and then tested on a battery of behavioral experiments aimed to mimic major symptoms of schizophrenia in adulthood (between PND 90 and 120). Ketamine treatment reduced the number of cells that expressed PV in the PFC by ∼60% as previously described. Ketamine affected performance in an attentional set-shifting task, impairing the ability of the animals to perform an extradimensional shift to acquire a new strategy. Ketamine-treated animals showed deficits in latent inhibition, novel-object recognition and social novelty detection compared to their SAL-treated littermates. These deficits were not a result of generalized anxiety, as both groups performed comparably on an elevated plus maze. Ketamine treatment did not cause changes in amphetamine-induced hyperlocomotion that are often taken as measures for the positive-like symptoms of the disorder. Thus, ketamine administration during development appears to be a useful model for inducing cognitive and negative symptoms of schizophrenia. Copyright © 2015. Published by Elsevier B.V.
    Behavioural Brain Research 01/2015; 282. DOI:10.1016/j.bbr.2015.01.010 · 3.03 Impact Factor
  • Source
    • "It is notable that this burst in GluR2 expression coincides with the time frame when neurons are most susceptible to PCP-induced apoptosis (Ikonomidou et al., 1999; Wang et al., 2001). Additionally, a recent study revealed that chronic treatment with MK-801 reduced AMPA currents in interneurons but increased the frequency and amplitude of AMPA currents in pyramidal cells (Wang and Gao, 2012). Thus, the susceptibility of some interneurons to PCP could be compounded by the relatively low level of calcium-permeable AMPARs at this stage of development. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Phencyclidine (PCP) is a noncompetitive, open channel blocker of the N-methyl-D-aspartate (NMDA) receptor-ion channel complex. When administered to immature animals, it is known to cause apoptotic neurodegeneration in several regions, and this is followed by olanzapine-sensitive, schizophrenia-like behaviors in late adolescence and adulthood. Clarification of its mechanism of action could yield data that would help to inform the treatment of schizophrenia. In our initial experiments, we found that α-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid (AMPA) inhibited PCP-induced apoptosis in organotypic neonatal rat brain slices in a concentration-dependent and 6-cyano-7-nitroquinoxaline-2,3-dione-sensitive manner. Calcium signaling pathways are widely implicated in apoptosis, and PCP prevents calcium influx through NMDA receptor channels. We therefore hypothesized that AMPA could protect against this effect by activation of voltage-dependent calcium channels (VDCCs). In support of this hypothesis, pretreatment with the calcium channel blocker cadmium chloride eliminated AMPA-mediated protection against PCP. Furthermore, the L-type VDCC inhibitor nifedipine (10 µM) fully abrogated the effects of AMPA, suggesting that L-type VDCCs are required for AMPA-mediated protection against PCP-induced neurotoxicity. Whereas the P/Q-type inhibitor ω-agatoxin TK (200 nM) reduced AMPA protection by 51.7%, the N-type VDCC inhibitor ω-conotoxin (2 µM) had no effect. Decreased AMPA-mediated protection following cotreatment with K252a, a TrkB inhibitor, suggests that brain-derived neurotrophic factor signaling plays an important role. By analogy, these results suggest that activation of L-type, and to a lesser extent P/Q-type, VDCCs might be advantageous in treating conditions associated with diminished NMDAergic activity during early development. © 2014 Wiley Periodicals, Inc.
    Journal of Neuroscience Research 12/2014; 92(12). DOI:10.1002/jnr.23446 · 2.59 Impact Factor
  • Source
    • "Far fewer studies have examined scaling in interneurons, and to date, the results have been varied. Some studies have found that excitatory inputs to inhibitory interneurons undergo scaling in a compensatory direction [42], [43], [44], however other studies do not find compensatory changes in the mEPSCs of inhibitory interneurons [5], [36], [45]. In one study where activity was reduced in 3 different classes of interneurons, no compensatory change was seen in either spontaneous EPSCs or IPSCs [46]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Synaptic scaling represents a process whereby the distribution of a cell's synaptic strengths are altered by a multiplicative scaling factor. Scaling is thought to be a compensatory response that homeostatically controls spiking activity levels in the cell or network. Previously, we observed GABAergic synaptic scaling in embryonic spinal motoneurons following in vivo blockade of either spiking activity or GABAA receptors (GABAARs). We had determined that activity blockade triggered upward GABAergic scaling through chloride accumulation, thus increasing the driving force for these currents. To determine whether chloride accumulation also underlies GABAergic scaling following GABAAR blockade we have developed a new technique. We expressed a genetically encoded chloride-indicator, Clomeleon, in the embryonic chick spinal cord, which provides a non-invasive fast measure of intracellular chloride. Using this technique we now show that chloride accumulation underlies GABAergic scaling following blockade of either spiking activity or the GABAAR. The finding that GABAAR blockade and activity blockade trigger scaling via a common mechanism supports our hypothesis that activity blockade reduces GABAAR activation, which triggers synaptic scaling. In addition, Clomeleon imaging demonstrated the time course and widespread nature of GABAergic scaling through chloride accumulation, as it was also observed in spinal interneurons. This suggests that homeostatic scaling via chloride accumulation is a common feature in many neuronal classes within the embryonic spinal cord and opens the possibility that this process may occur throughout the nervous system at early stages of development.
    PLoS ONE 04/2014; 9(4):e94559. DOI:10.1371/journal.pone.0094559 · 3.23 Impact Factor
Show more