Stochastic oscillations in models of epidemics on a network of cities.

Centro de Física da Matéria Condensada and Departamento de Física, Faculdade de Ciências da Universidade de Lisboa, Lisboa Codex, Portugal.
Physical Review E (Impact Factor: 2.31). 11/2011; 84(5 Pt 1):051919. DOI: 10.1103/PhysRevE.84.051919
Source: PubMed

ABSTRACT We carry out an analytic investigation of stochastic oscillations in a susceptible-infected-recovered model of disease spread on a network of n cities. In the model a fraction f(jk) of individuals from city k commute to city j, where they may infect, or be infected by, others. Starting from a continuous-time Markov description of the model the deterministic equations, which are valid in the limit when the population of each city is infinite, are recovered. The stochastic fluctuations about the fixed point of these equations are derived by use of the van Kampen system-size expansion. The fixed point structure of the deterministic equations is remarkably simple: A unique nontrivial fixed point always exists and has the feature that the fraction of susceptible, infected, and recovered individuals is the same for each city irrespective of its size. We find that the stochastic fluctuations have an analogously simple dynamics: All oscillations have a single frequency, equal to that found in the one-city case. We interpret this phenomenon in terms of the properties of the spectrum of the matrix of the linear approximation of the deterministic equations at the fixed point.

  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Models of epidemics in complex networks are improving our predictive understanding of infectious disease outbreaks. Nonetheless, applying network theory to plant pathology is still a challenge. This overview summarizes some key developments in network epidemiology that are likely to facilitate its application in the study and management of plant diseases. Recent surveys have provided much-needed datasets on contact patterns and human mobility in social networks, but plant trade networks are still understudied. Human (and plant) mobility levels across the planet are unprecedented-there is thus much potential in the use of network theory by plant health authorities and researchers. Given the directed and hierarchical nature of plant trade networks, there is a need for plant epidemiologists to further develop models based on undirected and homogeneous networks. More realistic plant health scenarios would also be obtained by developing epidemic models in dynamic, rather than static, networks. For plant diseases spread by the horticultural and ornamental trade, there is the challenge of developing spatio-temporal epidemic simulations integrating network data. The use of network theory in plant epidemiology is a promising avenue and could contribute to anticipating and preventing plant health emergencies such as European ash dieback.
    AoB PLANTS 01/2014; 6. · 1.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rubella is a completely immunizing and mild infection in children. Understanding its behaviour is of considerable public health importance because of congenital rubella syndrome, which results from infection with rubella during early pregnancy and may entail a variety of birth defects. The recurrent dynamics of rubella are relatively poorly resolved, and appear to show considerable diversity globally. Here, we investigate the behaviour of a stochastic seasonally forced susceptible-infected-recovered model to characterize the determinants of these dynamics and illustrate patterns by comparison with measles. We perform a systematic analysis of spectra of stochastic fluctuations around stable attractors of the corresponding deterministic model and compare them with spectra from full stochastic simulations in large populations. This approach allows us to quantify the effects of demographic stochasticity and to give a coherent picture of measles and rubella dynamics, explaining essential differences in the recurrent patterns exhibited by these diseases. We discuss the implications of our findings in the context of vaccination and changing birth rates as well as the persistence of these two childhood infections.
    Journal of The Royal Society Interface 01/2013; 10(88):20130643. · 4.91 Impact Factor

Full-text (3 Sources)

Available from
May 28, 2014