Article

RECENT DEVELOPMENTS IN NEUROPATHOLOGY OF AUTISM SPECTRUM DISORDERS.

University of Zagreb Medical School, Croatian Institute for Brain Research, Zagreb, Croatia.
Translational neuroscience 01/2011; 2(3):256-264.
Source: PubMed

ABSTRACT Autism spectrum disorders (ASD) represent complex neurodevelopmental disorders characterized by impairments in reciprocal social interactions, abnormal development and use of language, and monotonously repetitive behaviors. With an estimated heritability of more than 90%, it is the most strongly genetically influenced psychiatric disorder of the young age. In spite of the complexity of this disorder, there has recently been much progress in the research on etiology, early diagnosing, and therapy of autism. Besides already advanced neuropathologic research, several new technological innovations, such as sleep functional MRI, diffusion tensor imaging (DTI) and proton magnetic resonance spectroscopy imaging ((1)H-MRS) divulged promising breakthroughs in exploring subtle morphological and neurochemical changes in the autistic brain. This review provides a comprehensive summary of morphological and neurochemical alterations in autism known to date, as well as a short introduction to the functional research that has begun to advance in the last decade. Finally, we mention the progress in establishing new standardized diagnostic measures and its importance in early recognition and treatment of ASD.

0 Bookmarks
 · 
114 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Prior studies have shown that performance on standardized measures of memory in children with autism spectrum disorder (ASD) is substantially reduced in comparison to matched typically developing controls (TDC). Given reported deficits in face processing in autism, the current study compared performance on an immediate and delayed facial memory task for individuals with ASD and TDC. In addition, we examined volumetric differences in classic facial memory regions of interest (ROI) between the two groups, including the fusiform, amygdala, and hippocampus. We then explored the relationship between ROI volume and facial memory performance. We found larger volumes in the autism group in the left amygdala and left hippocampus compared to TDC. In contrast, TDC had larger left fusiform gyrus volumes when compared with ASD. Interestingly, we also found significant negative correlations between delayed facial memory performance and volume of the left and right fusiform and the left hippocampus for the ASD group but not for TDC. The possibility of larger fusiform volume as a marker of abnormal connectivity and decreased facial memory is discussed.
    Behavioral sciences. 01/2013; 3(3):348-371.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Autism spectrum disorders (ASD) are highly heritable complex neurodevelopmental disorders with a 4:1 male: female ratio. Common genetic variation could explain 40-60% of the variance in liability to autism. Because of their small effect, genome-wide association studies (GWASs) have only identified a small number of individual single-nucleotide polymorphisms (SNPs). To increase the power of GWASs in complex disorders, methods like convergent functional genomics (CFG) have emerged to extract true association signals from noise and to identify and prioritize genes from SNPs using a scoring strategy combining statistics and functional genomics. We adapted and applied this approach to analyze data from a GWAS performed on families with multiple children affected with autism from Autism Speaks Autism Genetic Resource Exchange (AGRE). We identified a set of 133 candidate markers that were localized in or close to genes with functional relevance in ASD from a discovery population (545 multiplex families); a gender specific genetic score (GS) based on these common variants explained 1% (P = 0.01 in males) and 5% (P = 8.7 × 10(-7) in females) of genetic variance in an independent sample of multiplex families. Overall, our work demonstrates that prioritization of GWAS data based on functional genomics identified common variants associated with autism and provided additional support for a common polygenic background in autism.
    Frontiers in Genetics 01/2014; 5:33.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This systematic review aims to determine whether or not structural magnetic resonance imaging (sMRI) data support the DSM-5 proposal of an autism spectrum disorder (ASD) diagnostic category, and whether or not classical DSM-IV autistic disorder (AD) and Asperger syndrome (AS) categories should be subsumed into it. The most replicated sMRI findings in patients with ASD compared with healthy controls are increased total brain volume in early childhood and decreased corpus callosum volume. Regarding the notion of a spectrum, some studies support that AS and AD are similar but “quantitatively different” diagnostic categories, whereas others support that they are “qualitatively different” entities with specific brain structural abnormalities. It seems that there are still not enough arguments from sMRI data for or against subsuming DSM-IV categories under a single ASD category.
    Research in Autism Spectrum Disorders 02/2013; 7(2):333–343. · 2.96 Impact Factor

Full-text (2 Sources)

Download
50 Downloads
Available from
Jun 1, 2014