Article

Intracellular recordings of action potentials by an extracellular nanoscale field-effect transistor

Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
Nature Nanotechnology (Impact Factor: 31.17). 12/2011; 7(3):174-9. DOI: 10.1038/nnano.2011.223
Source: PubMed

ABSTRACT The ability to make electrical measurements inside cells has led to many important advances in electrophysiology. The patch clamp technique, in which a glass micropipette filled with electrolyte is inserted into a cell, offers both high signal-to-noise ratio and temporal resolution. Ideally, the micropipette should be as small as possible to increase the spatial resolution and reduce the invasiveness of the measurement, but the overall performance of the technique depends on the impedance of the interface between the micropipette and the cell interior, which limits how small the micropipette can be. Techniques that involve inserting metal or carbon microelectrodes into cells are subject to similar constraints. Field-effect transistors (FETs) can also record electric potentials inside cells, and because their performance does not depend on impedance, they can be made much smaller than micropipettes and microelectrodes. Moreover, FET arrays are better suited for multiplexed measurements. Previously, we have demonstrated FET-based intracellular recording with kinked nanowire structures, but the kink configuration and device design places limits on the probe size and the potential for multiplexing. Here, we report a new approach in which a SiO2 nanotube is synthetically integrated on top of a nanoscale FET. This nanotube penetrates the cell membrane, bringing the cell cytosol into contact with the FET, which is then able to record the intracellular transmembrane potential. Simulations show that the bandwidth of this branched intracellular nanotube FET (BIT-FET) is high enough for it to record fast action potentials even when the nanotube diameter is decreased to 3 nm, a length scale well below that accessible with other methods. Studies of cardiomyocyte cells demonstrate that when phospholipid-modified BIT-FETs are brought close to cells, the nanotubes can spontaneously penetrate the cell membrane to allow the full-amplitude intracellular action potential to be recorded, thus showing that a stable and tight seal forms between the nanotube and cell membrane. We also show that multiple BIT-FETs can record multiplexed intracellular signals from both single cells and networks of cells.

0 Bookmarks
 · 
215 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Research on nanoscale semiconductor devices will elicit a novel understanding of biological systems. First, we discuss why it is necessary to build interfaces between cells and semiconductor nanoelectronics. Second, we describe some recent molecular biophysics studies with nanowire field effect transistor sensors. Third, we present the use of nanowire transistors as electrical recording devices that can be integrated into synthetic tissues and targeted intra- or extracellularly to study single cells. Lastly, we discuss future directions and challenges in further developing this area of research, which will advance biology and medicine.
    01/2014; 2(5):619. DOI:10.1039/c3bm60280j
  • [Show abstract] [Hide abstract]
    ABSTRACT: Monitoring the molecular recognition, binding, and disassociation between probe and target is important in medical diagnostics and drug screening, because such a wealth of information can be used to identify the pathogenic species and new therapeutic candidates. Nanoelectronic biosensors based on silicon nanowire field-effect transistors (SiNW-FETs) have recently attracted tremendous attention as a promising tool in the investigation of biomolecular interactions due to their capability of ultra-sensitive, selective, real-time, and label-free detection. Herein, we summarize the recent advances in label-free analysis of molecule-molecule interactions using SiNW-FETs, with a discussion and emphasis on small molecule-biomolecule interaction, biomolecule-biomolecule interactions (including carbohydrate-protein interaction, protein-protein or antigen-antibody binding, and nucleic acid-nucleic acid hybridization), and protein-virus interaction. Such molecular recognitions offer a basis of biosensing and the dynamics assay of biomolecular association or dissociation. Compared to the conventional technologies, SiNW-FETs hold great promise to monitor molecule-molecule interactions with higher sensitivity and selectivity. Finally, several prospects concerning the future development of SiNW-FET biosensor are discussed.
    08/2014; 33(2). DOI:10.1515/revac-2014-0010
  • Source

Full-text (2 Sources)

Download
73 Downloads
Available from
May 22, 2014