Article

Sirt1 mediates neuroprotection from mutant huntingtin by activation of TORC1 and CREB transcriptional pathway

Department of Neurology, Massachusetts General Hospital, MassGeneral Institute for Neurodegenerative Disease, Harvard Medical School, Charlestown, Massachusetts, USA.
Nature medicine (Impact Factor: 28.05). 12/2011; 18(1):159-65. DOI: 10.1038/nm.2559
Source: PubMed

ABSTRACT Sirt1, a NAD-dependent protein deacetylase, has emerged as a key regulator of mammalian transcription in response to cellular metabolic status and stress. Here we show that Sirt1 has a neuroprotective role in models of Huntington's disease, an inherited neurodegenerative disorder caused by a glutamine repeat expansion in huntingtin protein (HTT). Brain-specific knockout of Sirt1 results in exacerbation of brain pathology in a mouse model of Huntington's disease, whereas overexpression of Sirt1 improves survival, neuropathology and the expression of brain-derived neurotrophic factor (BDNF) in Huntington's disease mice. We show that Sirt1 deacetylase activity directly targets neurons to mediate neuroprotection from mutant HTT. The neuroprotective effect of Sirt1 requires the presence of CREB-regulated transcription coactivator 1 (TORC1), a brain-specific modulator of CREB activity. We show that under normal conditions, Sirt1 deacetylates and activates TORC1 by promoting its dephosphorylation and its interaction with CREB. We identified BDNF as a key target of Sirt1 and TORC1 transcriptional activity in both normal and Huntington's disease neurons. Mutant HTT interferes with the TORC1-CREB interaction to repress BDNF transcription, and Sirt1 rescues this defect in vitro and in vivo. These studies suggest a key role for Sirt1 in transcriptional networks in both the normal and Huntington's disease brain and offer an opportunity for therapeutic development.

0 Bookmarks
 · 
220 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sirtuin 1 is a nicotinamide adenine dinucleotide-dependent protein deacetylase which regulates longevity and improves metabolism. Activation of Sirtuin 1 confers beneficial effects in models of neurodegenerative diseases. We and others have provided convincing evidence that overexpression of Sirtuin 1 plays a neuroprotective role in mouse models of Huntington's disease. In this study, we report that SRT2104, a small molecule Sirtuin 1 activator, penetrated the blood-brain barrier, attenuated brain atrophy, improved motor function, and extended survival in a mouse model of Huntington's disease. These findings imply a novel therapeutic strategy for Huntington's disease by targeting Sirtuin 1.
    12/2014; 1(12):1047-52. DOI:10.1002/acn3.135
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Age-related neurodegenerative disorders including Alzheimer's disease and Huntington's disease (HD) consistently show elevated DNA damage, but the relevant molecular pathways in disease pathogenesis remain unclear. One attractive gene is that encoding the ataxia-telangiectasia mutated (ATM) protein, a kinase involved in the DNA damage response, apoptosis, and cellular homeostasis. Loss-of-function mutations in both alleles of ATM cause ataxia-telangiectasia in children, but heterozygous mutation carriers are disease-free. Persistently elevated ATM signaling has been demonstrated in Alzheimer's disease and in mouse models of other neurodegenerative diseases. We show that ATM signaling was consistently elevated in cells derived from HD mice and in brain tissue from HD mice and patients. ATM knockdown protected from toxicities induced by mutant Huntingtin (mHTT) fragments in mammalian cells and in transgenic Drosophila models. By crossing the murine Atm heterozygous null allele onto BACHD mice expressing full-length human mHTT, we show that genetic reduction of Atm gene dosage by one copy ameliorated multiple behavioral deficits and partially improved neuropathology. Small-molecule ATM inhibitors reduced mHTT-induced death of rat striatal neurons and induced pluripotent stem cells derived from HD patients. Our study provides converging genetic and pharmacological evidence that reduction of ATM signaling could ameliorate mHTT toxicity in cellular and animal models of HD, suggesting that ATM may be a useful therapeutic target for HD.
    Science translational medicine 12/2014; 6(268). DOI:10.1126/scitranslmed.3010523 · 14.41 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Histone acetyltransferases (HATs) and histone deacetylases (HDACs) promote histone posttranslational modifications, which lead to an epigenetic alteration in gene expression. Aberrant regulation of HATs and HDACs in neuronal cells results in pathological consequences such as neurodegeneration. Alzheimer's disease is the most common neurodegenerative disease of the brain, which has devastating effects on patients and loved ones. The use of pan-HDAC inhibitors has shown great therapeutic promise in ameliorating neurodegenerative ailments. Recent evidence has emerged suggesting that certain deacetylases mediate neurotoxicity, whereas others provide neuroprotection. Therefore, the inhibition of certain isoforms to alleviate neurodegenerative manifestations has now become the focus of studies. In this review, we aimed to discuss and summarize some of the most recent and promising findings of HAT and HDAC functions in neurodegenerative diseases.
    Biomolecular concepts 08/2013; 4(4):319-33. DOI:10.1515/bmc-2012-0053

Full-text (2 Sources)

Download
10 Downloads
Available from
Sep 16, 2014