Article

Sirt1 mediates neuroprotection from mutant huntingtin by activation of TORC1 and CREB transcriptional pathway

Department of Neurology, Massachusetts General Hospital, MassGeneral Institute for Neurodegenerative Disease, Harvard Medical School, Charlestown, Massachusetts, USA.
Nature medicine (Impact Factor: 28.05). 12/2011; 18(1):159-65. DOI: 10.1038/nm.2559
Source: PubMed

ABSTRACT Sirt1, a NAD-dependent protein deacetylase, has emerged as a key regulator of mammalian transcription in response to cellular metabolic status and stress. Here we show that Sirt1 has a neuroprotective role in models of Huntington's disease, an inherited neurodegenerative disorder caused by a glutamine repeat expansion in huntingtin protein (HTT). Brain-specific knockout of Sirt1 results in exacerbation of brain pathology in a mouse model of Huntington's disease, whereas overexpression of Sirt1 improves survival, neuropathology and the expression of brain-derived neurotrophic factor (BDNF) in Huntington's disease mice. We show that Sirt1 deacetylase activity directly targets neurons to mediate neuroprotection from mutant HTT. The neuroprotective effect of Sirt1 requires the presence of CREB-regulated transcription coactivator 1 (TORC1), a brain-specific modulator of CREB activity. We show that under normal conditions, Sirt1 deacetylates and activates TORC1 by promoting its dephosphorylation and its interaction with CREB. We identified BDNF as a key target of Sirt1 and TORC1 transcriptional activity in both normal and Huntington's disease neurons. Mutant HTT interferes with the TORC1-CREB interaction to repress BDNF transcription, and Sirt1 rescues this defect in vitro and in vivo. These studies suggest a key role for Sirt1 in transcriptional networks in both the normal and Huntington's disease brain and offer an opportunity for therapeutic development.

Full-text

Available from: Jeffrey N Savas, Sep 16, 2014
0 Followers
 · 
234 Views
  • Source
    Frontiers in Aging Neuroscience 12/2014; 6. DOI:10.3389/fnagi.2014.00333 · 2.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Reactive oxygen species (ROS) are continuously generated during metabolism. ROS are involved in redox signalling but, in significant concentrations they can greatly elevate oxidative damage leading to neurodegeneration. Because of the enhanced sensitivity of brain to ROS, it is especially important to maintain a normal redox state in brain and spinal cord cell types. The complex effects of exercise benefit brain function, including functional enhancement as well as preventive and therapeutic roles. Exercise can induce neurogenesis via neurotrophic factors, increase capillarization, decrease oxidative damage, and enhance repair of oxidative damage. Exercise is also effective in attenuating age-associated loss in brain function, which suggests that physical activity-related complex metabolic and redox changes are important for a healthy neural system.
    Free Radical Research 07/2013; DOI:10.3109/10715762.2013.826352 · 2.99 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nicotinamide adenine dinucleotide (NAD(+)) is a classical coenzyme mediating many redox reactions. NAD(+) also plays an important role in the regulation of NAD(+)-consuming enzymes, including sirtuins, poly-ADP-ribose polymerases (PARPs), and CD38/157 ectoenzymes. NAD(+) biosynthesis, particularly mediated by nicotinamide phosphoribosyltransferase (NAMPT), and SIRT1 function together to regulate metabolism and circadian rhythm. NAD(+) levels decline during the aging process and may be an Achilles' heel, causing defects in nuclear and mitochondrial functions and resulting in many age-associated pathologies. Restoring NAD(+) by supplementing NAD(+) intermediates can dramatically ameliorate these age-associated functional defects, counteracting many diseases of aging, including neurodegenerative diseases. Thus, the combination of sirtuin activation and NAD(+) intermediate supplementation may be an effective antiaging intervention, providing hope to aging societies worldwide.
    Trends in cell biology 04/2014; DOI:10.1016/j.tcb.2014.04.002 · 12.31 Impact Factor