A new approach to manipulate the fate of single neural stem cells in tissue

Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
Nature Neuroscience (Impact Factor: 16.1). 12/2011; 15(2):329-37. DOI: 10.1038/nn.3008
Source: PubMed


A challenge in the field of neural stem cell biology is the mechanistic dissection of single stem cell behavior in tissue. Although such behavior can be tracked by sophisticated imaging techniques, current methods of genetic manipulation do not allow researchers to change the level of a defined gene product on a truly acute time scale and are limited to very few genes at a time. To overcome these limitations, we established microinjection of neuroepithelial/radial glial cells (apical progenitors) in organotypic slice culture of embryonic mouse brain. Microinjected apical progenitors showed cell cycle parameters that were indistinguishable to apical progenitors in utero, underwent self-renewing divisions and generated neurons. Microinjection of single genes, recombinant proteins or complex mixtures of RNA was found to elicit acute and defined changes in apical progenitor behavior and progeny fate. Thus, apical progenitor microinjection provides a new approach to acutely manipulating single neural stem and progenitor cells in tissue.

Download full-text


Available from: Elena Taverna, Feb 16, 2014
  • Source
    • "Only recently has the establishment of time-lapse videomicroscopy and transgenesis evolved to the point that direct visualization of AP and BP divisions in organotypic slice cultures became possible [38–40]. Moreover, the identification of molecular markers for BP [37], the generation of transgenic reporter mice allowing their visualization in alive tissues [98, 99], and new methods to genetically manipulate individual cells in brain cortical slices [100] while also monitoring G1/S/G2 progression [101] currently allow us to directly investigate the role of ion channels, pumps, and their effects on membrane potential during mammalian corticogenesis at the single-cell level. Overcoming the use of dissociated cells cultures and uncertainties with regard to the identity of different progenitors subtypes, these powerful new tools may allow us to reveal a new role of bioelectric signaling in NSC differentiation and likely reconcile the different reports that were discussed in this paper. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The concerted action of ion channels and pumps establishing a resting membrane potential has been most thoroughly studied in the context of excitable cells, most notably neurons, but emerging evidences indicate that they are also involved in controlling proliferation and differentiation of nonexcitable somatic stem cells. The importance of understanding stem cell contribution to tissue formation during embryonic development, adult homeostasis, and regeneration in disease has prompted many groups to study and manipulate the membrane potential of stem cells in a variety of systems. In this paper we aimed at summarizing the current knowledge on the role of ion channels and pumps in the context of mammalian corticogenesis with particular emphasis on their contribution to the switch of neural stem cells from proliferation to differentiation and generation of more committed progenitors and neurons, whose lineage during brain development has been recently elucidated.
    09/2012; 2012(21):816049. DOI:10.1155/2012/816049
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neocortex expansion during evolution is associated with the enlargement of the embryonic subventricular zone, which reflects an increased self-renewal and proliferation of basal progenitors. In contrast to human, the vast majority of mouse basal progenitors lack self-renewal capacity, possibly due to lack of a basal process contacting the basal lamina and downregulation of cell-autonomous production of extracellular matrix (ECM) constituents. Here we show that targeted activation of the ECM receptor integrin αvβ3 on basal progenitors in embryonic mouse neocortex promotes their expansion. Specifically, integrin αvβ3 activation causes an increased cell cycle re-entry of Pax6-negative, Tbr2-positive intermediate progenitors, rather than basal radial glia, and a decrease in the proportion of intermediate progenitors committed to neurogenic division. Interestingly, integrin αvβ3 is the only known cell surface receptor for thyroid hormones. Remarkably, tetrac, a thyroid hormone analog that inhibits the binding of thyroid hormones to integrin αvβ3, completely abolishes the intermediate progenitor expansion observed upon targeted integrin αvβ3 activation, indicating that this expansion requires the binding of thyroid hormones to integrin αvβ3. Convergence of ECM and thyroid hormones on integrin αvβ3 thus appears to be crucial for cortical progenitor proliferation and self-renewal, and hence for normal brain development and the evolutionary expansion of the neocortex.
    Development 02/2014; 141(4):795-806. DOI:10.1242/dev.101907 · 6.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hauling and anchoring the nucleus within immobile or motile cells, tissues, and/or syncytia represents a major challenge. In the past 15 years, Linkers of the Nucleoskeleton to the Cytoskeleton (LINC complexes) have emerged as evolutionary-conserved molecular devices that span the nuclear envelope and provide interacting interfaces for cytoskeletal networks and molecular motors to the nuclear envelope. Here, we review the molecular composition of LINC complexes and focus on how their genetic alteration in vivo has provided a wealth of information related to the relevance of nuclear positioning during tissue development and homeostasis with a special emphasis on the central nervous system. As it may be relevant for metastasis in a range of cancers, the involvement of LINC complexes in migration of nonneuronal cells via its interaction with the perinuclear actin cap will also be developed.
    Advances in Experimental Medicine and Biology 02/2014; 773:471-90. DOI:10.1007/978-1-4899-8032-8_21 · 1.96 Impact Factor
Show more