Article

Strength prior to endurance intra-session exercise sequence optimizes neuromuscular and cardiovascular gains in elderly men.

Exercise Research Laboratory, Physical Education School, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
Experimental gerontology (Impact Factor: 3.34). 12/2011; 47(2):164-9. DOI: 10.1016/j.exger.2011.11.013
Source: PubMed

ABSTRACT This study investigated the effects of different intra-session exercise sequences in the cardiovascular and neuromuscular adaptations induced by concurrent training in elderly. Twenty-six healthy elderly men (64.7±4.1years), were randomly placed into two concurrent training groups: strength training prior to (SE, n=13) or after (ES, n=13) endurance training. Subjects trained strength and endurance training 3 times per week performing both exercise types in the same training session. The peak oxygen uptake (VO(2peak)), maximum aerobic workload (W(máx)), absolute (VT(1) and VT(2)) and relative (VT(1)% and VT(2)%) ventilatory thresholds, as well as workloads at VT(1) and VT(2) (W(VT1) and W(VT2)) were evaluated during a maximal incremental test on a cycle ergometer before and after the training. In addition, muscle quality (MQ) was evaluated by the quotient between maximal dynamic strength (one repetition maximum test) of the knee extensors and the quadriceps femoris muscle thickness determined by ultrasonography. There were no modifications after training in the VT(1), VT(2), VT(1)%, and VT(2)%. There was significant increase in the W(VT1) only in SE (P<0.05), as well as significant increase in the W(VT2) in both groups (P<0.001). There was significant increase in the VO(2peak), with both groups showing increases (P<0.001), with no difference between groups; as well significant increase in the W(máx) (P<0.001) with no difference between SE and ES. The force per unit of muscle mass of knee extensors increased in both groups (P<0.001), but the increase was significantly higher in SE than in ES (27.5±12.7 vs. 15.2±10.3%, P<0.02). Hence, the intra-session exercise sequence had no influence in the maximal endurance power adaptations to concurrent training, but had influence in the magnitude of the muscle quality enhancements.

0 Bookmarks
 · 
161 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aging is associated with declines in the neuromuscular and cardiovascular systems, resulting in an impaired capacity to perform daily activities. Frailty is an age-associated biological syndrome characterized by decreases in the biological functional reserve and resistance to stressors due to changes in several physiological systems, which puts older individuals at special risk of disability. To counteract the neuromuscular and cardiovascular declines associated with aging, as well as to prevent and treat the frailty syndrome, the strength and endurance training seems to be an effective strategy to improve muscle hypertrophy, strength and power output, as well as endurance performance. The first purpose of this review was discuss the neuromuscular adaptations to strength training, as well as the cardiovascular adaptations to endurance training in healthy and frail elderly subjects. In addition, the second purpose of this study was investigate the concurrent training adaptations in the elderly. Based on the results found, the combination of strength and endurance training (i.e., concurrent training) performed at moderate volume and moderate to high intensity in elderly populations is the most effective way to improve both neuromuscular and cardiorespiratory functions. Moreover, exercise interventions that include muscle power training should be prescribed to frail elderly in order to improve the overall physical status of this population and prevent disability.
    Aging and Disease. 02/2014; 5(1).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Concurrent training is defined as simultaneously incorporating both resistance and endurance exercise within a periodized training regime. Despite the potential additive benefits of combining these divergent exercise modes with regards to disease prevention and athletic performance, current evidence suggests that this approach may attenuate gains in muscle mass, strength, and power compared with undertaking resistance training alone. This has been variously described as the interference effect or concurrent training effect. In recent years, understanding of the molecular mechanisms mediating training adaptation in skeletal muscle has emerged and provided potential mechanistic insight into the concurrent training effect. Although it appears that various molecular signaling responses induced in skeletal muscle by endurance exercise can inhibit pathways regulating protein synthesis and stimulate protein breakdown, human studies to date have not observed such molecular 'interference' following acute concurrent exercise that might explain compromised muscle hypertrophy following concurrent training. However, given the multitude of potential concurrent training variables and the limitations of existing evidence, the potential roles of individual training variables in acute and chronic interference are not fully elucidated. The present review explores current evidence for the molecular basis of the specificity of training adaptation and the concurrent interference phenomenon. Additionally, insights provided by molecular and performance-based concurrent training studies regarding the role of individual training variables (i.e., within-session exercise order, between-mode recovery, endurance training volume, intensity, and modality) in the concurrent interference effect are discussed, along with the limitations of our current understanding of this complex paradigm.
    Sports medicine (Auckland, N.Z.). 04/2014; 44(6).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study aimed to investigate the acute effects of two strength-training protocols on the neuromuscular and cardiorespiratory responses during endurance exercise. Thirteen young males (23.2 ± 1.6 years old) participated in this study. The hypertrophic strength-training protocol was composed of 6 sets of 8 squats at 75% of maximal dynamic strength. The plyometric strength-training protocol was composed of 6 sets of 8 jumps performed with the body weight as the workload. Endurance exercise was performed on a cycle ergometer at a power corresponding to the second ventilatory threshold until exhaustion. Before and after each protocol, a maximal voluntary contraction was performed, and the rate of force development and electromyographic parameters were assessed. After the hypertrophic strength-training and plyometric strength-training protocol, significant decreases were observed in the maximal voluntary contraction and rate of force development, whereas no changes were observed in the electromyographic parameters. Oxygen uptake and a heart rate during endurance exercise were not significantly different among the protocols. However, the time-to-exhaustion was significantly higher during endurance exercise alone than when performed after hypertrophic strength-training or plyometric strength-training (p <0.05). These results suggest that endurance performance may be impaired when preceded by strength-training, with no oxygen uptake or heart rate changes during the exercise.
    Journal of Human Kinetics 12/2014; 442014:171-181. · 0.70 Impact Factor