Decreased influenza-specific B cell responses in rheumatoid arthritis patients treated with anti-tumor necrosis factor

Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, 601 Elmwood Avenue, Box 695, Rochester, NY 14642, USA.
Arthritis research & therapy (Impact Factor: 3.75). 12/2011; 13(6):R209. DOI: 10.1186/ar3542
Source: PubMed


As a group, rheumatoid arthritis (RA) patients exhibit increased risk of infection, and those treated with anti-tumor necrosis factor (TNF) therapy are at further risk. This increased susceptibility may result from a compromised humoral immune response. Therefore, we asked if short-term effector (d5-d10) and memory (1 month or later) B cell responses to antigen were compromised in RA patients treated with anti-TNF therapy.
Peripheral blood samples were obtained from RA patients, including a subset treated with anti-TNF, and from healthy controls to examine influenza-specific responses following seasonal influenza vaccination. Serum antibody was measured by hemagglutination inhibition assay. The frequency of influenza vaccine-specific antibody secreting cells and memory B cells was measured by EliSpot. Plasmablast (CD19+IgD-CD27hiCD38hi) induction was measured by flow cytometry.
Compared with healthy controls, RA patients treated with anti-TNF exhibited significantly decreased influenza-specific serum antibody and memory B cell responses throughout multiple years of the study. The short-term influenza-specific effector B cell response was also significantly decreased in RA patients treated with anti-TNF as compared with healthy controls, and correlated with decreased influenza-specific memory B cells and serum antibody present at one month following vaccination.
RA patients treated with anti-TNF exhibit a compromised immune response to influenza vaccine, consisting of impaired effector and consequently memory B cell and antibody responses. The results suggest that the increased incidence and severity of infection observed in this patient population could be a consequence of diminished antigen-responsiveness. Therefore, this patient population would likely benefit from repeat vaccination and from vaccines with enhanced immunogenicity.

30 Reads
  • Source
    • "Samples from normal donors were obtained at the URMC. Peripheral blood mononuclear cells, plasma, and sera were isolated and cryopreserved as previously described [20]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Potent HIV-1 specific broadly neutralizing antibodies (BNA) are uncommon in HIV infected individuals, and have proven hard to elicit by vaccination. Several, isolated monoclonal BNA are polyreactive and also recognize self-antigens, suggesting a breach of immune tolerance in persons living with HIV (PLWH). Persons with systemic lupus erythematosus (SLE) often have elevated levels of autoreactive antibodies encoded by the VH4-34 heavy chain immunoglobulin gene whose protein product can be detected by the 9G4 rat monoclonal antibody. We have recently found that levels of these "9G4+" antibodies are also elevated in PLWH. However, the putative autoreactive nature of these antibodies and the relationship of such reactivities with HIV neutralization have not been investigated. We therefore examined the autoreactivity and HIV neutralization potential of 9G4+ antibodies from PLWH. Results show that 9G4+ antibodies from PLWH bound to recombinant HIV-1 envelope (Env) and neutralized viral infectivity in vitro, whereas 9G4+ antibodies from persons with SLE did not bind to Env and failed to neutralize viral infectivity. In addition, while 9G4+ antibodies from PLWH retained the canonical anti-i reactivity that mediates B cell binding, they did not display other autoreactivities common to SLE 9G4+ antibodies, such as binding to cardiolipin and DNA and had much lower reactivity with apoptotic cells. Taken together, these data indicate that the autoreactivity of 9G4+ antibodies from PLWH is distinct from that of SLE patients, and therefore, their expansion is not due to a general breakdown of B cell tolerance but is instead determined in a more disease-specific manner by self-antigens that become immunogenic in the context of, and possibly due to HIV infection. Further studies of 9G4+ B cells may shed light on the regulation of B cell tolerance and interface between the generation of specific autoreactivities and the induction of antiviral immunity in persons living with HIV.
    PLoS ONE 12/2013; 8(12):e85098. DOI:10.1371/journal.pone.0085098 · 3.23 Impact Factor
  • Source
    • "The involvement of the influenza pathway in RA, however, has not been reported before and may provide new clues to understand the pathophysiology mechanism of the disease. Indeed, a recent study showed that RA patients have an increased risk of infection although the increased susceptibility to infections could not be attributed to a compromised humoral immune response [25]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Genome-wide association studies (GWAS) led to the identification of numerous novel loci for a number of complex diseases. Pathway-based approaches using genotypic data provide tangible leads which cannot be identified by single marker approaches as implemented in GWAS. The available pathway analysis approaches mainly differ in the employed databases and in the applied statistics for determining the significance of the associated disease markers. So far, pathway-based approaches using GWAS data failed to consider the overlapping of genes among different pathways or the influence of protein–interactions. We performed a multistage integrative pathway (MIP) analysis on three common diseases - Crohn's disease (CD), rheumatoid arthritis (RA) and type 1 diabetes (T1D) - incorporating genotypic, pathway, protein- and domain-interaction data to identify novel associations between these diseases and pathways. Additionally, we assessed the sensitivity of our method by studying the influence of the most significant SNPs on the pathway analysis by removing those and comparing the corresponding pathway analysis results. Apart from confirming many previously published associations between pathways and RA, CD and T1D, our MIP approach was able to identify three new associations between disease phenotypes and pathways. This includes a relation between the influenza-A pathway and RA, as well as a relation between T1D and the phagosome and toxoplasmosis pathways. These results provide new leads to understand the molecular underpinnings of these diseases. The developed software herein used is available at
    PLoS ONE 10/2013; 8(10):e78577. DOI:10.1371/journal.pone.0078577 · 3.23 Impact Factor
  • Source
    • "Hemagglutinin assays were performed as previously described45 using the 2012–2011 WHO Influenza reagent Kit for identification of influenza isolates (WHO Collaborating Center for Surveillance, Epidemiology and Control of Influenza) and the Seiken method to remove non-specific inhibitors of hemagglutination. "
    [Show abstract] [Hide abstract]
    ABSTRACT: To identify sources of inter-subject variation in vaccine responses, we performed high-frequency sampling of human peripheral blood cells post-vaccination, followed by a novel systems biology analysis. Functional principal component analysis was used to examine time varying B cell vaccine responses. In subjects vaccinated within the previous three years, 90% of transcriptome variation was explained by a single subject-specific mathematical pattern. Within individual vaccine response patterns, a common subset of 742 genes was strongly correlated with migrating plasma cells. Of these, 366 genes were associated with human plasmablasts differentiating in vitro. Additionally, subject-specific temporal transcriptome patterns in peripheral blood mononuclear cells identified migration of myeloid/dendritic cell lineage cells one day after vaccination. Upstream analyses of transcriptome changes suggested both shared and subject-specific transcription groups underlying larger patterns. With robust statistical methods, time-varying response characteristics of individual subjects were effectively captured along with a shared plasma cell gene signature.
    Scientific Reports 07/2013; 3:2327. DOI:10.1038/srep02327 · 5.58 Impact Factor
Show more