Article

Synthesis and cytotoxicity of O,O'-dialkyl {[2-(substituted phenoxy)acetamido](substituted phenyl)methyl}phosphonates.

Key Laboratory of Pesticide and Chemical Biology, Ministry of Education and College of Chemistry, Central China Normal University, Wuhan 430079, PR China.
European journal of medicinal chemistry (Impact Factor: 3.27). 12/2011; 48:379-84. DOI: 10.1016/j.ejmech.2011.12.014
Source: PubMed

ABSTRACT A series of O,O'-dialkyl {[2-(substituted phenoxy)acetamido](substituted phenyl)methyl}phosphonates was synthesized and their cytotoxic activities were tested against various human tumor cell lines. Some compounds (5q, 5r, 5s, 5w, 5x and 5y) showed relatively high cytotoxicity. Especially, compounds 5x and 5q exhibited the best cytotoxicity against KB and CNE2 cells with IC(50) 7.1 and 11.4 μM, respectively. Their inhibitory activities against KB and CNE2 cells were even higher than that of fluorouracil.

0 Bookmarks
 · 
86 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A series of novel thiourea α-aminophosphonate derivatives containing DHA structure was designed and synthesized as antitumor agents. Their inhibitory activities against the NCI-H460 (lung), A549 (lung adenocarcinoma), HepG2 (liver) and SKOV3 (ovarian) human cancer cell lines were estimated using MTT assay in vitro. The screening results revealed that many compounds exhibited moderate to high levels of antitumor activities against the tested cancer cell lines and that most demonstrated more potent inhibitory activities compared with the commercial anticancer drug 5-fluorouracil. The mechanism of compound 5f was preliminarily investigated by acridine orange/ethidium bromide staining, Hoechst 33258 staining, JC-1 mitochondrial membrane potential staining, TUNEL assay, DNA ladder assay and flow cytometry, which indicated that the compound can induce cell apoptosis in A549 cells.
    European journal of medicinal chemistry 09/2013; 69C:508-520. · 3.27 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A series of novel acetamido derivatives containing N-pyridylpyrazole carboxamides was designed and synthesized by increasing the amide bridge of chlorantraniliprole using acetamido moieties and introducing different aryl substitutions. The target compounds were characterized by (1)H NMR, (13)C NMR, IR, and elemental analysis. Bioassays indicated that some of the synthesized compounds exhibited strong insecticidal activity against Plutella xylostella. Compounds 5e, 5g and 5v were the most potent, with LC50 values of 23.72, 2.04, and 20.01 mg/L, respectively. The insecticidal activity of compound 5g was higher than that of chlorpyrifos (LC50 = 7.25 mg/L), a commonly used insecticide. These results indicate that novel acetamido derivatives containing N-pyridylpyrazole carboxamides can effectively control P. xylostella.
    European journal of medicinal chemistry 06/2013; 67C:14-18. · 3.27 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A series of novel α-aminophosphonate derivatives containing DHA structure were designed and synthesized as antitumor agents. In vitro antitumor activities of these compounds against the NCI-H460 (human lung cancer cell), A549 (human lung adenocarcinoma cell), HepG2 (human liver cancer cell) and SKOV3 (human ovarian cancer cell) human cancer cell lines were evaluated and compared with commercial anticancer drug 5-fluorouracil (5-FU), employing standard MTT assay. The pharmacological screening results revealed that many compounds exhibited moderate to high levels of antitumor activities against the tested cancer cell lines and that most demonstrated more potent inhibitory activities compared with the commercial anticancer drug 5-FU. The action mechanism of representative compound 7c was preliminarily investigated by acridine orange/ethidium bromide staining, Hoechst 33258 staining, JC-1 mitochondrial membrane potential staining and flow cytometry, which indicated that the compound can induce cell apoptosis in NCI-H460 cells. Cell cycle analysis showed that compound 7c mainly arrested NCI-H460 cells in G1 stage.
    Bioorganic & medicinal chemistry letters 08/2013; · 2.65 Impact Factor