ART: a next-generation sequencing read simulator.

Biostatistics Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.
Bioinformatics (Impact Factor: 4.62). 12/2011; 28(4):593-4. DOI: 10.1093/bioinformatics/btr708
Source: PubMed

ABSTRACT ART is a set of simulation tools that generate synthetic next-generation sequencing reads. This functionality is essential for testing and benchmarking tools for next-generation sequencing data analysis including read alignment, de novo assembly and genetic variation discovery. ART generates simulated sequencing reads by emulating the sequencing process with built-in, technology-specific read error models and base quality value profiles parameterized empirically in large sequencing datasets. We currently support all three major commercial next-generation sequencing platforms: Roche's 454, Illumina's Solexa and Applied Biosystems' SOLiD. ART also allows the flexibility to use customized read error model parameters and quality profiles. AVAILABILITY: Both source and binary software packages are available at

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Analysis of targeted amplicon sequencing data presents some unique challenges in comparison to the analysis of random fragment sequencing data. Whereas reads from randomly fragmented DNA have arbitrary start positions, the reads from amplicon sequencing have fixed start positions that coincide with the amplicon boundaries. As a result, any variants near the amplicon boundaries can cause misalignments of multiple reads that can ultimately lead to false-positive or false-negative variant calls. We show that amplicon boundaries are variant calling blind spots where the variant calls are highly inaccurate. We propose that an effective strategy to avoid these blind spots is to incorporate the primer bases in obtaining read alignments and post-processing of the alignments, thereby effectively moving these blind spots into the primer binding regions (which are not used for variant calling). Targeted sequencing data analysis pipelines can provide better variant calling accuracy when primer bases are retained and sequenced. Read bases beyond the variant site are necessary for analysis of amplicon sequencing data. Enzymatic primer digestion, if used in the target enrichment process, should leave at least a few primer bases to ensure that these bases are available during data analysis. The primer bases should only be removed immediately before the variant calling step to ensure that the variants can be called irrespective of where they occur within the amplicon insert region.
    BMC Genomics 12/2014; 15(1):1073. · 4.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A crucial problem in genome assembly is the discovery and correction of misassembly errors in draft genomes. We develop a method that will enhance the quality of draft genomes by identifying and removing misassembly errors using paired short read sequence data and optical mapping data. We apply our method to various assemblies of the loblolly pine and Francisella tularensis genomes. Our results demonstrate that we detect more than 54% of extensively misassembled contigs and more than 60% of locally misassembed contigs in an assembly of Francisella tularensis, and between 31% and 100% of extensively misassembled contigs and between 57% and 73% of locally misassembed contigs in the assemblies of loblolly pine. MISSEQUEL can be downloaded at
  • Conference Paper: Supersonic MiB
    [Show abstract] [Hide abstract]
    ABSTRACT: A novel assembly pipeline, MiB, employs Minimum Description Length (MDL), de-Bruijn graphs and Bayesian estimation for reference assisted assembly of the novel genome. In a previous study MiB assembly was compared with nine other assembly algorithms showing significant improvement in results coupled with very large execution times. This correspondence introduces 'Supersonic MiB', an extension to our previous study MiB. Supersonic MiB aims to stimulate the assembly pipeline of MiB showing significant improvement in execution time compared to its predecessor.
    2013 IEEE International Workshop on Genomic Signal Processing and Statistics (GENSIPS); 11/2013

Full-text (2 Sources)

Available from
Aug 1, 2014