Article

The Rpd3 core complex is a chromatin stabilization module.

Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1737, USA.
Current biology: CB (Impact Factor: 10.99). 12/2011; 22(1):56-63. DOI: 10.1016/j.cub.2011.11.042
Source: PubMed

ABSTRACT The S. cerevisiae Rpd3 large (Rpd3L) and small (Rpd3S) histone deacetylase (HDAC) complexes are prototypes for understanding transcriptional repression in eukaryotes [1]. The current view is that they function by deacetylating chromatin, thereby limiting accessibility of transcriptional factors to the underlying DNA. However, an Rpd3 catalytic mutant retains substantial repression capability when targeted to a promoter as a LexA fusion protein [2]. We investigated the HDAC-independent properties of the Rpd3 complexes biochemically and discovered a chaperone function, which promotes histone deposition onto DNA, and a novel activity, which prevents nucleosome eviction but not remodeling mediated by the ATP-dependent RSC complex. These HDAC-independent activities inhibit Pol II transcription on a nucleosomal template. The functions of the endogenous Rpd3 complexes can be recapitulated with recombinant Rpd3 core complex comprising Sin3, Rpd3, and Ume1. To test the hypothesis that Rpd3 contributes to chromatin stabilization in vivo, we measured histone H3 density genomewide and found that it was reduced at promoters in an Rpd3 deletion mutant but partially restored in a catalytic mutant. Importantly, the effects on H3 density are most apparent on RSC-enriched genes [3]. Our data suggest that the Rpd3 core complex could contribute to repression via a novel nucleosome stabilization function.

0 Bookmarks
 · 
84 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Autophagy is the primary catabolic process triggered in response to starvation. Although autophagic regulation within the cytosolic compartment is well established, it is becoming clear that nuclear events also regulate the induction or repression of autophagy. Nevertheless, a thorough understanding of the mechanisms by which sequence-specific transcription factors modulate expression of genes required for autophagy is lacking. Here, we identify Foxk proteins (Foxk1 and Foxk2) as transcriptional repressors of autophagy in muscle cells and fibroblasts. Interestingly, Foxk1/2 serve to counter-balance another forkhead transcription factor, Foxo3, which induces an overlapping set of autophagic and atrophic targets in muscle. Foxk1/2 specifically recruits Sin3A-HDAC complexes to restrict acetylation of histone H4 and expression of critical autophagy genes. Remarkably, mTOR promotes the transcriptional activity of Foxk1 by facilitating nuclear entry to specifically limit basal levels of autophagy in nutrient-rich conditions. Our study highlights an ancient, conserved mechanism whereby nutritional status is interpreted by mTOR to restrict autophagy by repressing essential autophagy genes through Foxk-Sin3-mediated transcriptional control.
    Nature Cell Biology 11/2014; 16(12). DOI:10.1038/ncb3062 · 20.06 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chromatin regulation is essential to regulate genes and genome activities. In plants, the alteration of histone modification and DNA methylation are coordinated with changes in the expression of stress-responsive genes to adapt to environmental changes. Several chromatin regulators have been shown to be involved in the regulation of stress-responsive gene networks under abiotic stress conditions. Specific histone modification sites and the histone modifiers that regulate key stress-responsive genes have been identified by genetic and biochemical approaches, revealing the importance of chromatin regulation in plant stress responses. Recent studies have also suggested that histone modification plays an important role in plant stress memory. In this review, we summarize recent progress on the regulation and alteration of histone modification (acetylation, methylation, phosphorylation, and SUMOylation) in response to the abiotic stresses, drought, high-salinity, heat, and cold in plants.
    Frontiers in Plant Science 01/2015; 6:114. DOI:10.3389/fpls.2015.00114 · 3.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It was recently reported that the sizes of many mRNAs change when budding yeast cells exit mitosis and enter the meiotic differentiation pathway. These differences were attributed to length variations of their untranslated regions. The function of UTRs in protein translation is well established. However, the mechanism controlling the expression of distinct transcript isoforms during mitotic growth and meiotic development is unknown. In this study, we order developmentally regulated transcript isoforms according to their expression at specific stages during meiosis and gametogenesis, as compared to vegetative growth and starvation. We employ regulatory motif prediction, in vivo protein-DNA binding assays, genetic analyses and monitoring of epigenetic amino acid modification patterns to identify a novel role for Rpd3 and Ume6, two components of a histone deacetylase complex already known to repress early meiosis-specific genes in dividing cells, in mitotic repression of meiosis-specific transcript isoforms. Our findings classify developmental stage-specific early, middle and late meiotic transcript isoforms, and they point to a novel HDAC-dependent control mechanism for flexible transcript architecture during cell growth and differentiation. Since Rpd3 is highly conserved and ubiquitously expressed in many tissues, our results are likely relevant for development and disease in higher eukaryotes. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
    Nucleic Acids Research 12/2014; 43(1). DOI:10.1093/nar/gku1185 · 8.81 Impact Factor