Article

Intestinal Metabolism of Two A-type Procyanidins Using the Pig Cecum Model: Detailed Structure Elucidation of Unknown Catabolites with Fourier Transform Mass Spectrometry (FTMS)

NRW Graduate School of Chemistry, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 10, 48149 Münster, Germany.
Journal of Agricultural and Food Chemistry (Impact Factor: 3.11). 12/2011; 60(3):749-57. DOI: 10.1021/jf203927g
Source: PubMed

ABSTRACT Procyanidins, as important secondary plant metabolites in fruits, berries, and beverages such as cacao and tea, are supposed to have positive health impacts, although their bioavailability is yet not clear. One important aspect for bioavailability is intestinal metabolism. The investigation of the microbial catabolism of A-type procyanidins is of great importance due to their more complex structure in comparison to B-type procyanidins. A-type procyanidins exhibit an additional ether linkage between the flavan-3-ol monomers. In this study two A-type procyanidins, procyanidin A2 and cinnamtannin B1, were incubated in the pig cecum model to mimic the degradation caused by the microbiota. Both A-type procyanidins were degraded by the microbiota. Procyanidin A2 as a dimer was degraded by about 80% and cinnamtannin B1 as a trimer by about 40% within 8 h of incubation. Hydroxylated phenolic compounds were quantified as degradation products. In addition, two yet unknown catabolites were identified, and the structures were elucidated by Fourier transform mass spectrometry.

0 Followers
 · 
89 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: ScopeA major portion of ingested procyanidins are degraded by human microbiota in the colon into various phenolic compounds. These microbial metabolites are thought to contribute to the health benefits of procyanidins in vivo. The objective of this study was to identify and quantify the microbial metabolites of procyanidins after anaerobic fermentation with human microbiota.Methods and results(-)-Epicatechin, (+)-catechin, procyanidin B2, procyanidin A2, partially purified apple and cranberry procyanidins were incubated with human microbiota at a concentration equivalent to 0.5 mM epicatechin. GC-MS analysis showed that common metabolites of all six substrates were benzoic acid, 2-phenylacetic acid, 3-phenylpropionic acid, 2-(3’-hydroxyphenyl)acetic acid, 2-(4’-hydroxyphenyl)acetic acid, 3-(3’-hydroxyphenyl)propionic acid and hydroxyphenylvaleric acid. 5-(3’, 4’-Dihydroxyphenyl)-γ-valerolactones and 5-(3’-hydroxyphenyl)-γ-valerolactones were identified as the microbial metabolites of epicatechin, catechin, procyanidin B2, and apple procyanidins but not from the procyanidin A2 or cranberry procyanidin ferments. 2-(3’,4’-Dihydroxyphenyl)acetic acid was only found in the fermented broth of procyanidin B2, A2, apple and cranberry procyanidins. The mass recoveries of microbial metabolites range from 20.0% to 56.9% for the six substrates after 24 h of fermentation.Conclusion Procyanidins, both B-type and A-type can be degraded by human gut microbiota. The microbial metabolites may contribute to the bioactivities of procyanidins.This article is protected by copyright. All rights reserved
    Molecular Nutrition & Food Research 11/2014; 58(11). DOI:10.1002/mnfr.201400243 · 4.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this work, the biosynthesis and regulation of the polyketide synthase/nonribosomal peptide synthetase (PKS/NRPS)-derived mutagenic mycotoxin fusarin C was studied in the fungus Fusarium fujikuroi. The fusarin gene cluster consists of nine genes (fus1-fus9) that are coexpressed under high-nitrogen and acidic pH conditions. Chromatin immunoprecipitation revealed a correlation between high expression and enrichment of activating H3K9-acetylation marks under inducing conditions. We provide evidence that only four genes are sufficient for the biosynthesis. The combination of genetic engineering with nuclear magnetic resonance and mass-spectrometry-based structure elucidation allowed the discovery of the putative fusarin biosynthetic pathway. Surprisingly, we indicate that PKS/NRPS releases its product with an open ring structure, probably as an alcohol. Our data indicate that 2-pyrrolidone ring closure, oxidation at C-20, and, finally, methylation at C-20 are catalyzed by Fus2, Fus8, and Fus9, respectively.
    Chemistry & biology 08/2013; DOI:10.1016/j.chembiol.2013.07.004 · 6.59 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Scope: Procyanidins are amongst the most abundant polyphenols in the human diet and they are reported to exhibit several beneficial health effects. However the knowledge about their metabolic fate is rather limited. To investigate the systemic absorption and metabolism of dietary procyanidin B4 a kinetic study using pigs as model system has been performed.Methods and results: After oral application of a single-dose of 10 mg/kg body weight procyanidin B4, urine and plasma were collected over a period of 48 h. Procyanidin B4 and its possible metabolites were analyzed in physiological samples using high-performance liquid chromatography tandem mass spectrometry and gas chromatography mass spectrometry. Procyanidin B4 was detected as intact molecule in urine as well as in plasma. Maximum reached plasma concentration of procyanidin B4 (cmax) was 2.13 ng/mL (3.68 nM) and mean total urinary excretion related to the administered dose was 0.008 ± 0.003%. In addition to that the monomeric structural units catechin and epicatechin were determined as degradation products. Furthermore methylated and conjugated monomeric metabolites were identified. Monomeric metabolites were identified to be the major fraction occurring in the systemic circulation. The analysis of phenolic acids did not show an increase of these possible further metabolites.Conclusion: After oral administration procyanidin B4 is absorbed as intact molecule and it is excreted in urine. In addition it is degraded to the monomeric subunits which are then further metabolized to methylated and glucuronidated conjugates in pigs.This article is protected by copyright. All rights reserved
    Molecular Nutrition & Food Research 12/2014; 58(12). DOI:10.1002/mnfr.201400435 · 4.91 Impact Factor