Detection and Characterization of Wolbachia Infections in Natural Populations of Aphids: Is the Hidden Diversity Fully Unraveled?

University of Poitiers, France
PLoS ONE (Impact Factor: 3.53). 12/2011; 6(12):e28695. DOI: 10.1371/journal.pone.0028695
Source: PubMed

ABSTRACT Aphids are a serious threat to agriculture, despite being a rather small group of insects. The about 4,000 species worldwide engage in highly interesting and complex relationships with their microbial fauna. One of the key symbionts in arthropods is Wolbachia, an α-Proteobacterium implicated in many important biological processes and believed to be a potential tool for biological control. Aphids were thought not to harbour Wolbachia; however, current data suggest that its presence in aphids has been missed, probably due to the low titre of the infection and/or to the high divergence of the Wolbachia strains of aphids. The goal of the present study is to map the Wolbachia infection status of natural aphids populations, along with the characterization of the detected Wolbachia strains. Out of 425 samples from Spain, Portugal, Greece, Israel and Iran, 37 were found to be infected. Our results, based mainly on 16S rRNA gene sequencing, indicate the presence of two new Wolbachia supergroups prevailing in aphids, along with some strains belonging either to supergroup B or to supergroup A.


Available from: Diego Santos-Garcia, Apr 22, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is a globally distributed pest. One of the key endosymbionts in B. tabaci is Wolbachia, an α-proteobacterium implicated in many important biological processes. Previous studies indicated that the infection frequency of Wolbachia in Middle East-Asia Minor 1 (MEAM1) and Mediterranean (MED) varied greatly among populations in different areas. However, little is known about the factors that influence the prevalence of Wolbachia in B. tabaci. In this paper, 25 field populations were collected from different locations in China, and 1,161 individuals were screened for the presence of Wolbachia using a nested polymerase chain reaction (PCR)-based method, which targets the wsp gene, to confirm Wolbachia infection status. The prevalence of Wolbachia ranged from 1.54 to 66.67% within the 25 field populations, and the infection frequency of Wolbachia was affected significantly by the putative species of B. tabaci. The infection frequency (51.55%) of Wolbachia was significantly greater in native species than in the MED (25.65%) and MEAM1 (14.37%). With the exception of host plant, all factors, including putative species, geographic location, and the sex of the host, affected the Wolbachia infection frequency in whiteflies. Six Wolbachia strains were found and clustered into four distinct clades upon phylogenetic analyses. Furthermore, Wolbachia in B. tabaci have close relationships with those from other host species, including Liriomyza trifolii (Burgess), Sogatella furcifera (Horvath), Nilaparvata lugens (Stål), and Culex pipiens L. The results demonstrated the variation and diversity of Wolbachia in B. tabaci field populations, and that the application of nested PCR extended our knowledge of Wolbachia infection in B. tabaci, especially in invasive whiteflies.
    Journal of Economic Entomology 01/2015; DOI:10.1093/jee/tou004 · 1.61 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Associations between microbes and animals are ubiquitous and hosts may benefit from harbouring microbial communities through improved resource exploitation or resistance to environmental stress. The pea aphid, Acyrthosiphon pisum, is the host of heritable bacterial symbionts, including the obligate endosymbiont Buchnera aphidicola and several facultative symbionts. While obligate symbionts supply aphids with key nutrients, facultative symbionts influence their hosts in many ways such as protection against natural enemies, heat tolerance, color change and reproduction alteration. The pea aphid also encompasses multiple plant-specialized biotypes, each adapted to one or a few legume species. Facultative symbiont communities differ strongly between biotypes, although bacterial involvement in plant specialization is uncertain. Here, we analyse the diversity of bacterial communities associated with nine biotypes of the pea aphid complex using amplicon pyrosequencing of 16S rRNA genes. Combined clustering and phylogenetic analyses of 16S sequences allowed identifying 21 bacterial OTUs (Operational Taxonomic Unit). More than 98% of the sequencing reads were assigned to known pea aphid symbionts. The presence of Wolbachia was confirmed in A. pisum while Erwinia and Pantoea, two gut associates, were detected in multiple samples. The diversity of bacterial communities harboured by pea aphid biotypes was very low, ranging from 3 to 11 OTUs across samples. Bacterial communities differed more between than within biotypes but this difference did not correlate with the genetic divergence between biotypes. Altogether, these results confirm that the aphid microbiota is dominated by a few heritable symbionts and that plant specialization is an important structuring factor of bacterial communities associated with the pea aphid complex. However, since we examined the microbiota of aphid samples kept a few generations in controlled conditions, it may be that bacterial diversity was underestimated due to the possible loss of environmental or transient taxa.
    PLoS ONE 03/2015; 10(3): e0120664(3). DOI:10.1371/journal.pone.0120664 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Wolbachia is the most abundant intracellular bacterial genus infecting a wide range of arthropods and filarial nematodes. Wolbachia have evolved parasitic, mutualistic and commensal relationships with their hosts but in arthropods generally act as reproductive parasites, inducing a wide range of phenotypic effects such as cytoplasmic incompatibility, parthenogenesis, feminization and male-killing. Up to now, the genus has been divided into 14 supergroups successively named A-O. Here, we describe two new Wolbachia supergroups from syringophilid mites (Acari: Cheyletoidea). These obligatory ectoparasites of birds inhabit the quills of feathers in many avian groups. The species of this family reproduce in a haplodiploid mode sensu arrhenotoky and are usually strongly female-biased. Based on the sequences of four protein-coding genes (ftsZ, gltA and groEL and coxA) and the 16S rRNA we identified strains of three Wolbachia supergroups (F and two distinct, yet undescribed ones) in five quill mite species. Our results suggest that in some cases the distribution of the bacteria can be better correlated with the mite’s bird host rather than with mite taxonomy as such. The discovery of two new Wolbachia supergroups not only broadens the knowledge of the diversity of this bacterium but also raises questions about potential effects induced in quill mites and transmission mechanisms of the endosymbionts in this peculiar bacteria-quill mite-bird system.
    Infection Genetics and Evolution 03/2015; 30:140–146. DOI:10.1016/j.meegid.2014.12.019 · 3.26 Impact Factor